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SUMMARY

Quantum mechanical calculations are carried out for the reaction
cross-sections of H + Br2 — HBr + Br. A technique is used which is an
improvement over the distorted wave Born approximation in that an account
is made of the distortion of the HBr bond by the outgoing Br atom. This
approach, called the perturbed Morse oscillator method, is generalized
for all bimolecular, exothermic reactions A + BC = AB + C for which the
potential energy surface can be described as:

(1) A Morse-like bonding interaction between A and B which
gradually approaches the normal AB bond as C departs.

(2) A mostly repulsive interaction between AB and C which
gradually vanishes as C departs.

The perturbed Morse oscillator method was applied to the specific
case of H + Br2 - HBr + Br, a potential energy surface for which was
calculated by the diatomics-in-molecules method of Ellison, This parti-
cular potential energy surface possessed the features (1) and (2) listed
above,

For a wide variety of initial conditions, reaction cross-sections
were obtained which were highest for the higher possible vibrational
states of HBr. Since Ellison's potential energy surface was one which
released most of the energy of reaction upon the approach of H to Br2,
it was dubbed an "attractive" potential energy surface. The high vibra-

tional excitation of the product molecule indicated by the gquantum

mechanical calculations of this investigation lends support to the
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classical mechanical calculation of Polanyi, who likewise observed a
high degree of product vibration for an "attractive" potential energy
surface.

To make additional comparisons with the classical mechanical re-
sults of Polanyi, a physically plausible Morse-like potential energy
surface was constructed which released a major portion of the energy of
reaction upon the departure of the product Br atom from HBr. This type
surface was referred to as a "repulsive" potential energy surface and
also possessed the features (1) and (2) mentioned previously. Repeating
the quantum mechanical calculations for this surface, reaction cross-
sections were obtained which attained their highest values for the lowest
four vibrational states of HBr. This result compared favorably with
that of the classical mechanical result of Polanyl for a "repulsive"
potential energy surface.

Since the infrared chemiluminescence studies of the H + Br2 -
HBr + Br reaction indicate that most of the HBr molecules are formed in
the lower vibrational states, it was concluded that the "repulsive"
potential energy surface more nearly represented the actual interaction
of H + Br2 - HBr + Br. Thus, calculations of the rate constants of the
above reaction were performed using the reaction cross-sections obtained
for the "repulsive" potential energy surface., Due tc the substantial
amounts of computer time involved, it was feasible to calculate the
reaction cross-sections corresponding to only a few initial conditions.
The resulting paucity of cross-sections necessitated the simplification
of the modern collision theory of rate constants for bimolecular reac-

tions. Rather than summing over all the statistically weighted initial



states at a given temperature, only the initial condition corresponding
to a Maxwell-Boltzmann averaged initial energy at that temperature was
considered. Even this simplified calculation, however, gave rate con-
stants in excellent agreement with experiment; that is, at 1000°K  a
total rate constant of 1.81 x lOlu cc/mole-sec was obtained as compared
to the experimental range of 1.04 x lOll+ - 6.30 x lOlu cc/mole-sec
reported by different investigators. Detailed rate constants (rate
constants referring to the rate of formation of HBr in specific vibra-
tional states) obtained from these calculations were in excellent quali-
tative agreement with the experimental results of Polanyi. That is, at
BOOOK the detailed rate constants of the fourth, fifth, and sixth ex-
cited vibrational states of HBr relative to the detailed rate constant
for the third excited vibrational state were found by Polanyi to be

0.6k, 0.19, and 0.05, respectively. In the present study, the correspond-
ing values determined by the simplified collision theory were 0.38, 0.12,

and 0,07,



CHAPTER I

INTRODUCTION

Statement of the Problem

Theoretical treatments of gas phase chemical reactions can be
conveniently classified into two parts. The first involves the study
of the details of intermolecular or intramolecular energy transfer,
particle exchange, particle emission, or pérticle capture. Secondly,

a study must be made of the manner in which a usually broad spectrum
of the above microscoplc processes are reflected in the macroscopic or
bulk behavicr of gas phase reactions. In other words, the former task
is concerned with the calculation of the probability of particular
events, whereas the latter effort is concerned with formalizing nathe-
matical relationships between these detailed probabilities and cbserv-
able reaction phenomena.

This study will be involved with the application of the non-
equilibrium collision theory of reaction rates (1-2) to the estimation
of rate constants for simple reactions. In the nonequilibrium collision
theory, the molecular collisions are individually studied with regard to
initial conditions, particle exchange, and energy exchange, the results
being defined in terms of cross-sections*. Then, the kinetic theory of

gases (3) is used to average over all the effects of the individual

A definition and discussion of the term "cross-section" as it applies
to collisions is given in Appendix A.



collisions resulting in reaction to obtain the rate constants,

Scope of the General Discussion

In general, the present investigation will be confined to chemi-
cal reactions that:

(1) Are bimolecular, occurring in a homogeneous gas phase under
practially ideal gas conditions.

(2) Are highly exothermic, releasing more than 20 kilocalories
per mole of one reactant.

(3) Are bimolecular exchange reactions involving only three atoms
A+BC-AB+C . (1-1)

The corresponding reasons for these restrictions are:

(1) Only bimolecular collisions are important at ideal gas condi-
tions, termolecular and higher order collisions occurring only rarely.
Also, the average time between bimolecular collisions in an ideal gas is
long compared fo the average collision time (4). Thus, each bimolecular
collision can be analyzed individually, the influence of the other mole-
cules being negligible. Afterwards, the conventional kinetic theory of
gases can be used to obtain the reaction rate by averaging the effects
of all possible types of reaction collisions. This approach is used in
the nonequilibriun collision theory of Hirschfelder, Ross, and others
(1-2).

(2) Recent molecular beam and infrared chemiluminescence experi-
ments have yielded data on how the energy of highly exothermic reactions
of this type is distributed among the products (5-8). Attempts have

been made to use the results of these experiments to elucidate the nature



of the potential energy function governing the nuclear motion,.

Assuming an expression, possessing reasonable mathematical form
and containing adjustable parameters, for the potential energy function,
the various nuclear motions occurring during a bimolecular collision
are tracked by classical mechanics. The potential energy parameters
are adjusted until agreement between theory and experiment is reached.
So far, no detailed analyses of the nuclear motion occurring in highly
exothermic, reactive collisions have been carried out quantum mechani-
cally.

(3) One of the simplest possible chemical reactions is the ex-

change reaction

A+BC~—-AB+C . (1-2)

A third body, atom C in this case, is required to carry away sufficient
energy to meke AB stable, so the simplest reaction must involve at least
three atoms. On the other hand, mathematical difficulties make it ex-
pedient to limit theoretical studies of the nuclear motion to a three-
body problem., It is well known, of course, that analytical solutions
are not available for the general problem of three-body motion and hence
numerical methods are necessary to study reactions of the above type,

In addition, many complex reactions involve one or more steps like
Equation (1-2), so these simple processes are well worth studying.

The Specific Task

The nonequilibrium collision theory of reaction rates (1) will be

applied to the reaction



H + Br, - HBr + Br . (1-3)

This reaction has an exothermicity of 41 kilocalories and is an important

process in the overall combustion reaction

H2 + Br2 -+ 2 HBr . (1-4)

Recently, a semiempirical calculation of the potential energy surface
for the linear system H--Br--Br was performed by Ellison (9) using his
"diatomics-in-molecules” method. 1In addition, an infrared chemilumine-
scence study of this reaction has just been performed by Polanyi (10),
and the distribution of energy among the products analyzed. The approach
to be used in the present study is to modify Elliscn's basic potential
energy surface with appropriate terms and include adjustable parameters.
Then preliminary theoretical studies of the nuclear motion will be per-
formed, the resulting energy distribution among the products examined,
and the potential energy parameters adjusted until reasonable agreement
with the infrared chemiluminescence experiments of Polanyi is obtained.
After the adjustment of the potential energy function, the theore-
tical treatment of the collision dynamics will continue until the cross-
sections required in the nonequilibrium collision theory of reaction
rates are obtained. From these cross-sections the specific rate con-
stants will be calculated and compared with experimental estimates of

the rate constant for the reaction, i.e., Equation (1-3).

Background
Elementary, exothermic, gas phase reactions having low activation

energies have been the center of much scientific and engineering interest



in recent years. The engineering interest derives primarily from the
importance of these rapid, energy releasing processes in combustion
reactions of the sort

Hy, + Br2 - 2 HBr s (1-5)

which is thought (11) to proceed via the mechanism

(1) M + Br, -2 Br + M

(2) Br + H, - HBr + H
(3) H + Br2 - HBr +'Br
() H +Hr  ~H, + Br
(5) M+ Br +Br -Br, +M

Here, the symbol M denotes any of the molecular species listed above.

Using the steady-state treatment gives rise to (11)

. N/ . vy
JLnBr] | 2 A (A7&)7 H] [Br)

dt £, [ HBr]
SRNTTY

(1-6)

I

The most rapid, most exothermic step above contributing to the forward
progress of the total combustion reaction, Equation (1-5), is the reac-

tion given by Equation (1-3), i.e., the test system to be used in this

investigation.

Need for Rate Constants of Simple Reactions

In flame propagation studies, it is usually desirable to know the

rate constants for each of the elementary processes contributing to the



overall combustion reaction (12-14), The rate constants for the slower
elementary reactions can sometimes be determined by direct experimenta-
tion, but some elementary reactions occur so rapldly that the measurement
of their rate constants cannot be accomplished by direct means. Very
often rate constants for very fast reactions must be approximated by an
analysis of the overall reaction rate. Usually this analysis reqgulres
the use of a very complicated deductive pr&cess in conjunction with the
steady-state treatment (11).

It is apparent, therefore, that a suitable theory for predicting
the rate constants of very fast, simple reactions would find immediate
application in the study of combustion processes. Unfortunately, the
simple collision and absolute reaction rate theories, the more tradi-
tional theories of chemical kinetics, are usually inappropriate for
these reactions. Unless the activation energy of the reaction is suffi-
clently large, for instance, the more energetic reactant molecules will
be depleted faster than they can be replenished by nonreactive colli-
sional processes (15-16). 1In this case, the Maxwell-Boltzmann distribu-
tion of energy states among the reactants is distorted, thus invalidating
the equilibrium hypothesis inherent in the theory of absolute reaction
rates. With regard to the simple collision theory, some reactions in-
volve such complicated intermolecular interactions that steric factors
and collision diameters are difficult to estimate correctly. Thus,
there is a definite need to examine the possibility of estimating rate
constants of rapid, elementary processes by using a theory which not
only avoids the equilibrium hypothesis but also allows for more detailed

study of the intermolecular interactions.



Nonequilibrium Collision Theory

Such a theory is the nonequilibrium collision theory established
by Hirschfelder and Eliason (1) and Ross and Mazur (2). Conceptually,
this theory bears a resemblance to the nonequilibrium theory for trans-
port properties of polyatomic molecules devised by Wang-Chang and Uhlen-
beck (17). In the latter theory, a molecule of definite chemical type
A and having a definite internal state 1 is sald to constitute a "species"
A(t). The transport processes in a gas of polyatomic molecules were
studied in light of the transitions from "species" A(t) to "species" A(t')
occurring as a result of bimolecular collisions. For chemical processes,
therefore, it is only necessary to extend the examination to transitions

of the type A(t) to B(J).

Relation Between the Rate Constant and the Reaction Cross-Section

Consider the isolated reaction between A(t) and B(j) to form C(k)

and D(1)
A(t) + B(3) = C(k) +D(1) . (1-7)

The nonequilibrium collision theory gives the detailed rate constant in

the forward reaction as

s

where p is the initial relative momentum, u is the reduced mass of A and

B, o; is the differential cross-section for transition from the initial

state i to the final state f via chemical reaction, O is the solid angle



of scattering, and Ft(EA) is the momentum distribution function of A(t),

normalized according to

VPP = (1-
JEGITE =1 -9

The momentum distribution function of B(j), i.e., Fj(gé) is also
normalized according to Equation (1-9).
The relation between the total and differential cross-sections

for chemical reaction is

A - i '
a4 ¢t }/F) = f g'f.‘(,é?,[; t, i, p ﬂ/)s/}z@c/QD(/@ (1-10)
F=0 '@ =0

The total reaction cross-section o(k,l;t,j,p) has the units of area and
represents the effective target area presented by a molecule B(j) to an
oncoming molecule A(t), approaching with relative momentum p, in order
for the collision outcome to be C(k) and D(1).

The total reaction rate constant Kt is given by averaging Equation
(1-8) over all possible internal states of the reactants and then summing

over all possible internal states of the products. The resulting ex-

pression for Kt is

K, = % 2?__ [ ple) 78,0 &4, p) EGIE B d % 47 (1-11)
/ '}



Determination of the Reaction Cross-Sections

Before the reaction rate Kt can be evaluvated, an expression for
the total reaction cross-section must be obtained. In recent years
attempts have been made to measure o(k,l;t,j,p) by molecular beam ex-
periments (5,7,18,19). At present, however, molecular beam technology
is not sufficiently developed to be of much use for a majority of reac-
tions, It seems that the problem of detecting the product molecules
after collision has limited most molecular beam investigations to reac-
tions involving alkali atoms.

Several attempts to calculate reaction cross-sections theoretically
have been made recently, and the results were compared with data from
molecular beam scattering experiments. Thus far, all of these thecoreti-
cal treatments have assumed that the electronic energy can be separated
from the nuclear energy in bimolecular encounters (the Born-Oppenheimer
separation) and that the electrons remain in one state (the "adiabatic"
assumption). Therefore, the theoretical investigation of molecular
collisions is reduced to the following problem in kinematics.,

Let N represent the number of nuclel comprising the two colliding
molecules. Then the motion of the two nuclel is governed by the poten-
tial-energy hypersurface dependent only on the %N(N—l) internuclear dis-
tances., For linear systems the potential energy function depends only
on (N-1) variables.

In order to obtain the potential-energy hypersurface, the
Schroedinger equation corresponding to the electronic motion must be
golved. Unfortunately, an exact solution of the electronic Schroedinger

equation is presently impossible for systems involving more than one
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electron, and hence, semiempirical methods (9,20,21) are necessary if
one wishes to calculate the potential energy hypersurface for compli-
cated systems., Further mention will be made of these methods in Chapter
ITI. The discussion that follows will assume that the required potential-
energy hypersurfaces have already been obtained.

The classical mechanical method of solving the above kinematical
problem involves the numerical integration of Hamilton's canonical equa-
tions of motion for the interacting nuclei. If, for a large number of
test cases, one picks a naturally occurring set of initial conditions for
the collision of two reactive molecules, and integrates the equations of
motion to obtain the complete trajectories of all the nuclei involved,
then by simply counting the number of test trajectories that lead to
reaction and noting the solid angle into which the products are scattered,
one can obtain the differential reaction cross-section. If the potential-
energy hypersurface is precisely known, then the calculation of the
individual nuclear trajectories is as exact as classical mechanics can
be. Because of the many thousands of calculations (test trajectories)
required in order to average over all of the various initial conditions,
the use of classical mechanics in making kinematical studies of the sort
above require an excessively large amount of computer time, even for the
high-speed computers of today. For instance, the most complete classical
mechanical study to date (22) required about ten seconds per trajectory.
Thus, 100,000 trajectories would require about 270 hours of computer time,
In contrast, the statistical nature of quantum mechanics allows for the
averaging over many of these initial conditions (impact parameter, mole-

cular orientation, and vibrational phase) with but a single calculation.
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Furthermore, classical mechanics may not be valid for studying the motion
of light nuclei at thermal energies under the influence of valence type
forces (23). Thus, a quantum mechanical treatment of the reactive
collision problem might be not only less time consuming than a classical
treatment but also more theoretically correct.

On the other hand, an exact solution of the Schroedinger equation
cérresponding to the nuclear motion is practically impossible, and re-
course must be made to some approximation scheme. Fortunately, an
approximate method suitable to the problem of reactive collisions between
molecules has already been formulated (24-25). This method is known as
the perturbed stationary state approximation or molecular wave function
method and will be employed in the present study. In classical mechanics,
suitable approximate methods have not been developed, and the calculation

of reaction cross-sections must be made on an all or nothing basis.
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CHAPTER II

REVIEW OF PREVIOUS CONTRIBUTIONS

This chapter will be concerned primarily with past attempts at
calculating the reaction cross-sections necessary in the nonequilibrium
collision theory of reaction rates., As such, the emphasis will be on
the more promising methods of obtaining the potential-energy hypersur-
faces and the more recent kinematical studies. No discussion will be
made of the simple collision and absolute rate theories since they have
been extensively presented in the standard textbooks (4,21,26) for the
last quarter of a century. Also, in order to save space, no discussion
of the derivation of Equation (1-8) will be given. Reference to the
papers by Ross (1) and Hirschfelder (2) can be made by those interested
in the development of the nonequilibrium collision theory of reaction

rates,

Born-Oppenheimer Separation

Most theoretical treatments of reactions of the type
A+B ~-AB+C |, (2-1)

have involved the Born-Oppenheimer separation (27), i.e., the separation
of the electronic and nuclear motions, When this methodology is used,
the nuclear motion is assumed to be "adiabatic," i.e., the motions of
electrons and nuclei are independent and the potential energy of the

system varies continuously during nuclear motion, so that this motion is
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not accompanied by electronic transition. A concise discussion of the
Born-Oppenheimer separation has been presented by Kondratiev (28) so
only the important points are presented here.

The Electronic States

The Schroedinger equation governing the electronic motion in the

reacting system is given by (28)

2

. N o . e
- £, 2w e (R3] e (R,(73) 2.0

X

= e (R« ({R.3, 1 3)

r - r -
where 1 Ré} and i r;} represent the set of position vectors for the
nuclei and electrons, respectively, m, is the electron mass, N is the

total number of electrons, and vi is the Laplacian operator with respect
o

to ;&. As indicated, the electronic eigenfunctions @k and eigenvalues €

depend on the coordinates of the nuclei, while the total potential energy

function U depends on the coordinates of the electrons and the nucleil.
During the course of a chemical reaction, the electronic state is

assumed to remain constant; thus, the nuclear motion is assumed to be

governed by a single electronic potential energy function e At ordinary

K
temperatures, the ground electronic state of the reacting system should

prevail (28). For example, at 1000k only 0.1 percent of the reactive

collisions H + Br2 — HBr + Br involve species in excited electronic states.

The Motion of the Nuclei

Another result of the Born-Oppenheimer separation is that the



1k

motion of the nuclei is described by a Schroedinger equation involving

only the nuclear coordinates (28), or

a}

vt e ((RY]w = £ ¥ ({R3) @

¢ /s’(; £ é 4 £

-5

=M

where E 1s the total energy, Q is the number of nuclei, M denotes the
mass of the Bth nucleus, and k represents the electronic states, usually
taken as the ground state. Since only one electronic state is considered
during the collision the subscript can be suppressed when denoting the

nuclear wave function Yk and the potential energy function ek.

Potential-Energy Functions

As mentioned earlier, the initial stage of the nonequilibrium
collision theory of reaction rates involves solving the problem of the
dependence of the potential energy of the colliding molecules on the co-
ordinates of all their component atoms. For the case of reactions of a
diatomic molecule,BC,with an atom A, it is necessary to know the energy
of the system A + B + C for any relative position of the three atoms. In
general, this problem must be solved not only for the ground state but
also for the excited electronic states. If the total number of atoms in
the system is N, the potential-energy of their interaction will depend
on M = 4N(N-1) coordinates of the atoms (in the case of a linear system
N-1 coordinates). The problem, therefore, consists of finding a mathe-

matical expression for the potential-energy hypersurface
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€ = C{IR-R |, ~- IR _-R,I) (2-4)

To derive an exact expression for Equation (2-4), for the case of
A + BC - AB + C, one must solve Equation (2-2). Unfortunately, overwhelm-
ing mathematical complications usually prevent the determination of an
exact solution to Equation (2-2), and recourse must be made to one of the
approximate methods outlined below.

Ab Initio Calculations

Ab_initio calculations have proven quite unsatisfactory for the
study of reaction rates. The treatments have usually involved using the
variational method in conjunction with trial wave functions embroidered
with all sorts of adjustable parameters (29-32). Some well known examples
of these methods are the valence-bond method (33), the linear combination
of atomic orbitals-molecular orbital method (31), and the molecular orbital
method with configuration interaction (34).

How unsatisfactory for reaction rate calculations ab initio methods
are was clearly pointed out in a recent calculation by Boys and Shavitt
(35) for the potential energy surface of the simple reaction H + H, =
H2 + H. Carrying out an extensive linear combination of atomic orbitals-
molecular orbital calculation, they obtained an activation energy (36) of
15.4 kcal/mole, whereas the experimental activation enefgy is about 8.8

kecal/mole (37).

Semiempirical Methods

The semiempirical methods of calculating potential-energy surfaces
combine the electronic energy expressions obtained from valence bond

theory with appropriate spectroscopic data. Generally held in higher
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regard than ab initio methods, semiempirical techniques have been widely
used in the absolute reaction rate theory of Eyring (21).

Eyring-Polanyi-Sato Method. The most widely used semiempirical

method in the early stages of the absolute reaction rate theory was the
technique devised by Eyring and Polanyi (38). The London equation, derived
from simple valence-bond theory, was used in conjunction with the Morse
parameters for all the diatomic molecules obtainable from the total reac-
tion system. Thus, if one desired the potential energy surface of the

reaction A + BC — AC + B, the appropriate London equation would be

\

2
2 by . A
E= QAB+Q“+Qsc-lfj‘.'z[(éAB-éAc) e, € )+ (€ €,.) B

(2-5)

where GKL and QKL are the exchange and coulombic energies, respectively,

cf the molecule KL. DNow, if QKL is assumed to be a constant fraction

PxT, of the total binding energy of the diatomic, KL, then the Morse

function (39)

/ 'y i ¢ : 3
E - DKL[exp(-Z a (- ro)-2expCa, (-1, )] (2-6)
where DéL, apr, and rEL are the spectroscopically determined Morse para-

meters, can be used to obtain € Since

L and QKL as functions of r

K KL*

£ =Q,  +té& (2-7)

KL KL KL
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then
€ =1 fed) DK/L[”P('MKL(';[ red)-2expta, (- )] (2-8)
% S O, Lexplaa, (nori)-2expay, (r -1 ) ] (2-9)

According to Eyring (38), the activation energies obtained by
this procedure are relatively insensitive to the pKL's over a large
range of values.

In the middle 1950's, Sato (40) devised a technique to avoid the
assumption of constant coulombic fraction in the Eyring-Polanyi method.
Using the information available on the shape of the antibonding 32 curve
for H,, he discovered that the antibonding energy-state 3E(r) could be

expressed approximately as

3E(r) = f g'exp[-za(r--‘ﬂ)J +2expl-a(r-re)] % (2-10)

for the hydrogen molecule. By assuming that this relation holds for

diatomic molecules KL in general, and by using the London expression (38)

3— - — -
ékL = QKL éK.L (2-11)

for the antibonding energy-state, Sato solved Equations (2-6), (2-10),

(2-7), and (2-11) for Qg 2nd e, at each interatomic distance; thus,

KL
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he avoided the assumption of constant Coulombic fraction.
In addition, Sato included an adjustable parameter k in the London

equation for the ground-state triatomic energy surface:

, o 2 o\
E = Z [QA3+ Qe * L"gc_,gil [(EAB- eAc) t (GAB- ésc) (2-12)

+ <éAc"ég¢)l] }‘/.l! ]

Originally, Sato proposed setting k equal to 1 + 82, where S is
the Heitler-London overlap integral (38), assumed equal for the three
diatomic fragments.

When applied to the system H + H2, however, Sato's treatment re-
quires that 32 = 0.148, whereas the correct value of 82 at the activated
state configuration is about three times larger (37). Furthermore, the
use of a constant S is erroneous since S changes appreciably with inter-
atomic distance. The net result is that Sato's method gives an activated
energy barrier that is much too thin; that is, the contribution of tun-
neling to reaction is in substantial contrast with experimental findings

(37).

Diatomics in Molecules Theory. In 1963, Ellison (L41) proposed a

scheme in which the electronic structure of a polyatomic molecule is ex-
pressed in terms of electronic structures for all possible diatomic and

monatomic fragments composing it. Although bearing a strong resemblance
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to the Eyring-Polanyi-Sato method, Ellison's theory contains no exchange
integrals, no coulomb integrals, and no calibration parameters.,

A derivation of this new theory will now be demonstrated for the
case of the reaction A + BC — AB + C, where the reaction configuration
is assumed to be linear.

Consider valence-bond structure wave functions ?I and TII corre-
sponding to A-BC and AB-C, respectively. If the symbols Dr represent

determinantal wave functions (antisymmetrical products of atomic spin

orbitals), then each of the functions ?I and ?II can be written as

Y =2 b (2-13)
r

Here, the b .. coefficients are chosen so that (1) ?n is antisymmetric with
respect to the interchange of spin factors of orbitals forming an electron
pair, (2) ?n is the proper eigenfunction of g2 (square of total spin
momentum) and S, (component of § upon z-axis), and (3) ?n is normalized
for infinite separation of the atoms.

Suppose that the polyatomic molecule ABC can be represented by a

resonance of the two valence~bond canonical structures ?I and ?II as

F = 2 a, ¢’ (2-14)
h

n

Determination of the optimum coefficients a, for which the molecular

electronic energy W is minimized results from the solution of the secu-

lar determinant



= C (2-15)

in which

S =f f{/h* Fod (2-10)

- . Z, : (2-17)
m

Here, H is the total electronic Hamiltonian of the polyatomic molecule,
and the integration is over all of real space, dT being a small element

of real space.

Fach valence-bond structure can be written as

. = A L/’;’ (2-18)

where A 1is the total antisymmetrization coperator and Ym, referred to as

the primitive function of the mth structure, is a linear combination of

simple products of atomic spin orbitals. Now, a typical energy matrix

element can be expressed as
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4 :/gp*,qﬁ ¢ 4T (2-19)
Nm ]

Since the operators H and A commute.
Next, consider that the total electronic Hamiltonian operator for

the polyatomic molecule ABC can be written as

H=H tH #H Y eV Y (2-20)
Fach HP contains all kinetic energy operators and all intraatomic potential-
energy terms in H which depend exclusively upon the coordinates of elec-
trons assigned originally to atom P and not upon the coordinates of any
nuclei other than nucleus P; VPQ contains all interatomic interaction
potential-energy terms in H depending upon electron coordinates common
to atom P and Q only. This method of partitioning H is called the atoms-
in-molecules method by Ellison.

The Hamiltonian HPQ for a diatomic molecule, written in its atoms-

in-molecules form, is

' = : (2-21)
Hpa HP t Hg + \/P‘Q

Solving this expression for VfQ and substituting into Egquation (2-20),

one obtains

Ho= Hop tH tH —H =H -y (2-22)

AB <
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This form of H is referred to as the diatomics-in-molecules (DIM)

Hamiltonian; it contains explicitly no "interaction" operators but only

Hamiltonians for the constituent diatomic molecules and atoms.

Substituting of Equation (2-22) into Equation (2-19) yields

= A8 Be  AC L g < (2-23)
Hnm Hnm r Hnm FA,, Hnm “H A,
where
PR - . ”
- d T (2—(.&)
Hhm / n /4 HPQ (/{”
. P - - (2-25)
Ho [&* A Ho¥, dT

At this point, Ellison states that the matrices CHES) and (i)
are not separately Hermitian, and indeed are not completely independent.
This is due to a relationship which exists between (HPQ> and <HDY .

Since (H) is Hermitian, <HY = <H) T, and thus

[< HAB>-(H”>+] A [HA-<u" YT T+ [KHE D -CHE DT | oz

= [ T - [KHB>-<u®Y - [Hd-<u) =0
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When Equation (2-23) is rewritten in the form

- TAEB = AC — B —A -8 - c (2-27
H/)m /L/hm + Hhm + Hﬂm B Hﬂm - #hm - Hﬂm )
where
P _ 4, Pa - pa i}
Hﬂm -2 (Hnm t Hmn ) (2-25)
— P ’ P P >
Hhm - i ( Hnlm + /./Inn ) <2— 59)

there is no necessary relationship between the elements of what may be
called the diatomic valence state energy matrices<fHPQ_> and atomic
valence state matrices<fHP:>. Both new matrices are Hermitian, and both
are defined uniquely in any representation which may be constructed
linearly from our set of canonical valence-bond structures ?n (42).

Equation (2-27) is the fundamental equation in the method of dia-
tomics in molecules. The total matrix element Hrlm has been partitioned
into parts correspanding to independent contributions from each diatomic
and monatomic fragment. The theory is still exact, no approximations
having been made as yet. Only the use of a limited set of canonical
structures in Equations (2-13) and (2-14) can contribute to errors in
this first portion of the theory; this restriction is common to nearly
all theories of electronic structure.

Consider now a partitioning of the total antisymmetrization
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operator A:

A=A " A A (2-30)

pa pPa " (Pa)

Here, the function of the operators A( is to antisymmetrize that set

PQ)
of electrons which are not originally assigned to the diatomic fragment
PQ, whereas APQ antisymmetrizes that set of electrons which are originally
assigned to PQ. The operator, AégQ) is the partial or "supplementary"
antisymmetrizer which completes the identity. The original assignment

of the electrons into the two sets is specified by the assignment of

electrons within the primitive function Ym in Equation (2-24). Substi-

tution of Equation (2-30) into Equation (2-24) yields

P& _roow pa) (2-31)
Hnm /l{h APQ HPQ APR" A(Pu) % JT

. . d .
since HPQ commutes with both A(PQ) an APQ
Since the primitive function Ym is a linear combination of simple

products of atomic spin orbitals, then

W = > b d (2-32)

m r mr r

where

19 — A <:/ (2"33)
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Each sample product dr may be written as

(PR)

Jd =474 (2-3h)

Here, diQ contains all atomic spin orbitals associated with the diatomic

(PQ)

fragment PQ only, whereas dr

contains all other atomic spin orbitals.
Thus, the right hand of the integrand in Equation (2-31) can be expressed

as

¢ = Z LoD P"p(m) (2-35)

since

d7¢ (2-36)

(PR) “r

A
~
~
123

]
A\
»
37

{t>
~
N
£

N

A A

The latter two factors are determinantal functions totally antisymmetric
with respect to those electrons in the set belonging to and not belonging
to the diatomic fragment PQ, respectively.

Now, if the valence-bond approximations to the ground and excited

states of the diatomic molecule PQ are available, then

pa — -\ PQ
- . (2-37
gxs - Lr c Dr )

The inverse of Equation (2-37) should be a good approximation of the
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determinantal function in terms of the eigenfunction
PQ — ., - P&
- S .- ( 2-38
0, Z (¢ )r5 4 (2-38)

Substitution of Equation (2-38) into Equation (2-35) and operation from

the left upon the results by HPQ yields

;o= S5 - ~PQ - PG o (PR) (2-39)
HPQ APa A(Pa)' vm 2:7 25 A"-r (€ )'f s Lb’ '1{5 é')
T ENEMT AL e

Using Equation (2-37), Equation (2-40) is now transformed back to

the determinantal wave function basis:

Hog A A ¢ :Z_[”Qgtjzc b (™) P (2-41)

since

(P&)  pg _(Pa)
= (2-42)
P4 /)e ﬂr pt, v

Accumulating the double sum over t and r into a single sum over the inde-

pendent determinants, Du’ Equation (2-41) can be written as
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(pQ)

A P g e =2 EZ g 0 (2-43)

pa | Pa’pa "(pa) "m s Sw et

Beginning with a canonical set of structures, Yn’ for the poly-
atomic molecule, Equation (2-13) can be inverted to obtain equations

for each Du in terms of canonical structure wave functions:

= > (i~ L (2-Lb4)
0«;& % (b )LiV '{/V
Substituting Equation (2-LL) into Equation (2-43) and combining the

double sum over u and v into a single sum over w, gives

(PQ) foo= N pe S s -
Ara Moo PoaPiow o =2 E 220 &, (2-45)

pa | pa’ P ” s wos

Introducing Equation (2-45) into Equation (2-31) yields

PR

/7;2«.? _ Z lf; Z /15 5,,,\, (2-46)
S w w

where the integrals SnW are the overlap integrals between valence-bond

PQ

structures as defined in Equation (2-16). The E " are the experimental
energies for the ground and excited electronic states of the diatomic

molecule PQ.

The same procedure can be carried out to obtain the energy inte-

grals Him’ appearing in Equation (2-29), as
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b = 5 B 2 s, (27

in which the Ez are experimental energies for electronic states of the
atom P.

It is obvious that Equations (2-27, (2-28), (2-29), (2-46), and
(2-47) are fundamental in the method of diatomics-in-molecules. From
these five relationships, the total energy matrix Hnm may be evaluated
in terms of overlap integrals Snw and experimental energies of diatomic
and monatomic fragments which comprise the given polyatomic.

In actuality, Equation (2-37) will be available only in approxi-
mation. According to Ellison, however, use of the inverse of Equation
(2-37)into Equation(2-39) followed by direct introduction of Equation
(2-37) into Equation (2-40) suggests a partial cancellation of concomitant
errors, and thus a possibly effective way to bridge the gap between poly-
atomic structure and one~ and two-atom structures using valence-bond
theory.

In Chapter V a potential energy surface for the linear system

H--Br--Br will be derived using the diatomics in molecules method.

Classical Mechanical Calculations of Reaction Cross-Sections

The classical mechanical method of investigating reaction cross-
sections is by numerical integration of Hamilton's canonical equations
of motion for the colliding system. If one picks a random set of initial
conditions for the collision of potentially reactive molecules, and

numerically integrates the equations of motion to obtain the complete
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trajectories of the particles involved, then by simply counting the
number of trajectories that lead to reaction and noting the solid angle
into which the products are scattered, one can obtain the reaction cross-
section. If all interactions are previocusly known, then the calculation
of individual trajectories is as exact as classical mechanics can be.

Wall, Hiller, and Mazur (L3-UL) used this approach to calculate
reaction probabilities for the system H2 + H-H+ H2. This calculation
clearly points out the complexities of this approach. For the system of
three hydrogen atoms there are eighteen independent dynamical varilables,
six of which can be eliminated by requiring the center of mass of the
system to be at rest. The total number of equations can be reduced further
by taking into account the fact that the total energy and the three total
angular momenta must be conserved. Wall and his colleagues deliberately
retained twelve equations so that they could check the accuracy of their
numerical integration. They assumed a London-Eyring-Polanyi (38) form
for the potential-energy and integrated Hamilton's equations with the aid
of a computer. This integration assumed that q; and P> the position and
momentum variables, respectively, corresponding to the ith degree of free-
dom, remained constant, at some average value, over time intervals At
(2 x lO-16 seconds in their calculations; this is much less than the
period of vibration of a hydrogen molecule, and it was found thét both
the total energy and angular momentum were accurately conserved for this
value of At).

In the first work of Wall, Hiller, and Mazur, H + H2 were held:

collinear and the initial conditions were varied systematically. In the

second paper the atoms were no longer constrained to move in a straight
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line, but were restricted to a single plane. The starting conditions
(rotational, vibrational, and translational energies) were chosen by a
weighted random method (Monte Carlo method). The first paper showed the
reaction probability to be a complicated banded function of the energy
of the reactants. Unfortunately, in the second calculation very little
reaction took place (6 out of 700 approaches led to reaction) so that
the results did not achieve a statistical significance.

Wall and Porter (45) returned to the original pattern of calcula-
tion (collinear reaction, systematic variation of reactant energies) with
an altered H + H, potential-energy function. The new function (46), more
empirical than the London-Polanyi-Eyring function, had a smooth potential
barrier without a "basin" which characterizes their earlier surface. Re-
moval of the "basin" had the effect of eliminating the marked oscillation
in reaction probability, characteristic of the earlier surface.

Studying the same reaction and performing more extensive calcula-
tions, Karplus, Porter, and Sharma (47) found the rate constant at 1000°K

to be 11 x lOll cm3 mole_l sec ,as compared to an experimental range of
11 to 22 x lOll cm3 mole_l sec-l. They used a semiempirical potential-
energy function (48) that is probably the best available at present for
the H + H2 interaction. An IBM 7094 computer was used to integrate the
equations of motion. The initial rotational and vibrational energies of
the reactant molecules were set, along with the value of the initial rela-
tive energy of approach, and a Monte Carlo scheme was used to average
over the molecular orientation, vibrational phase, and the impact para-

meter., The reaction cross-section was found to be essentially the same

for the first six rotatiocnal states of the reactant molecule, i.e., for
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about 95 percent of the reactant molecules. This is a significant dis-
covery since it eliminates the need for varying the initial rotational
energy and hence the number of required calculations is reduced to only
one-sixth of the number originally expected. The generality of this
phenomenon with regard to reactions other than H + H2 - H2 + H, will be
discussed later.

Noteworthy work in classical mechanical treatments of bimolecular
exchange reactions by Bunker (49-51) has treated the general case for
reactions of type A + BC » AB + C by varying the reactant masses, the
type of interaction potential, and the exothermicity. The motion was
restricted to a plane. On the basis of 10,000 calculated trajectories,
the following general conclusions were reached:

(1) The energy of reaction is converted predominantly into internal
excitation of the product.

(2) A normal reaction is one in which AB is most likely to recoil
backward along the approach line of A.

(3) The final rotation of AB absorbs as large a fraction of the
initial orbital angular momentum as is allowed by conservation of energy.

Bunker also made calculations for the three-dimensional case. The
treatment of Bunker and Karplus differed mainly in the averaging over
initial conditions. Karplus, as stated above, set the initial values of
the rotational and vibrational energies of the reactant molecule and the
value of the initial energy of approach. He then averaged over the im-
pact parameter and vibrational phase and orientation of the reactant mole-
cule by a Monte Carlo method. Bunker, however, averaged over all the

initial conditions by Monte Carlo techniques. The advantage of Karplus'



32

approach is that the reaction cross-section can be plotted as a function
of the vibrational and rotational energies of the reactant molecule and
the relative energy of approach. This reaction cross-section can then
be fed into Equation (1-11) and the rate constant obtained by numerical
integration. Any distribution function can be used, either the Maxwell-
Boltzmann distribution or some perturbed distribution function. Bunker's
method, however, requires that the distribution function be incorporated
into the Monte Carlo segment of the calculation. As a result, a new set
of calculations must be made if the distribution function is changed.
Nevertheless, Bunker's approach has the advantage of requiring fewer tra-
jectory calculations for the determination of a single reaction rate con-
stant,

Collision Complex

In analyzing the details of collision, Karplus and his colleagues
found no evidence of their potential energy hypersurface (48) of a H-H-H
complex. The collision time was approximately 3 x 1o'u seconds, which
is roughly the time required for an atom to make a single traversal of
the field-of-force of the molecule. Reaction was found to be favored
when the three atoms had a more linear configuration upon collision.
These observations were in essential agreement with those of Wall, et al.,
(43-L4) and with the crossed molecular beam experiments of the D + H, =
DH + H reaction, by Datz and Taylor (52).

Comparison of Two-Dimensional and Three-Dimensional Calculations

A classical analysis of the reactive collisions of K and CH.I

3

(K + CH3I - KI + CH3) was performed by Karplus and Raff (53-54) to aid

in the elucidation of crossed molecular beam studies of this system by



33

Herschbach and his co-workers (55-56). The methods of calculation were
similar to those used in the study of the H + H, = H, + H reaction L7y,
In the first paper (53), a comparison was made between the results calcu-
lated from a formulation that restricts the motion to a plane and one that
treats the complete three-dimensional motion. The partitioning of the
exothermicity of the reaction (22 kilocalories per mole) among the pro-
ducts and the total reaction cross-section were found to be similar in
the two- and three-dimensional treatments. Other reaction attributes,
however, were found to require a three-dimensional calculation for an
accurate evaluation. These were the form of the differentisl reaction
cross-section and the final-state angular-momentum distribution.

Elucidation of the Potential Energy Hypersurface

Tne potential-energy function used by Karplus and Raff (53) was one
used by Bunker (49) in his two-dimensional treatment of the same reaction.
Although the product-energy distribution was in reasonable agreement with
the experimental estimate (55) (approximately 90 percent of the energy of
reaction appears as rotational-vibrational energy of KI), the result ob-
tained for the total reaction cross-section was in serious disagreement
with the experimental data (400 Ag as compared with experimental value of
7 AZ). By an examination of the dependence of the total reaction cross-
section on the form of the interaction potential, it was found that the
over-estimate of the long-range attraction between the K atom and the CH3I
molecule was the probable source of error and that introduction of an
appropriate three-body attenuation term into Bunker's potential-energy

function led to more reasonable results.

Later (54), Karplus and Raff calculated the differential cross-
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section for the K + CH3I - KI+CH3 reaction for four types of potential-
energy hypersurfaces: (A) the modified Bunker surface used in their first
paper (53); (B) a potential-energy function identical to A, except for a
difference in the term designed to attenuate the K-I attraction when the
CH3 radical is near; (C) a potential-energy function similar to A, except
for a different K-CH3 repulsion term; (D) a special function designed to
maintain some CH3I attraction upon the approach of K, so that some sem-
blance of a collision complex will result. They found that potential
functions A and B gave results in reasonable agreement with experimental
data on the differential cross-section (56). Potential function C gave

a differential cross-section too peaked in the backward direction, while
surface D gave results in complete disagreement with the three others and
with experiment by yilelding an essentially uniform center-of-mass differ-
ential reaction cross-section.

Although these comparisons between theory and experiment provided
some information concerning the form of the potential energy hypersurface,
Karplus and Raff felt more refined measurements and more general calcula-
tions are required before a definite analysis can be completed,

Classical mechanical calculations have also been used to elucidate
the potential energy surface for certain exothermic reactions involving
hydrogen and the halogens. The evidence from infrared chemiluminescence

studies (6,10,57,58) indicates that the reactions H+ X, ~HX + X (H = H

2
or D, and X = C1l or Br) channel the heat of reaction preferentially into
relative translation and possibly rotation of the products, rather than

into vibration. This behavior sharply contrasts with that of the reactions

X+ M, > ML+ M (58) and M + RX = MX + R (56) (M is an alkali metal, R is
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an alkyl radical, and X is a halogen atom) for which a major part of the
heat of reaction goes into internal excitation (vibration and perhaps
rotation) of the products. Evans and Polanyi (59) linked the behavior
of the latter reactions to a type of potential-energy surface for linear
reaction, which can be called a purely "attractive" surface (10). On an
attractive surface the heat of reaction is liberated (potential — kinetic
energy) along the coordinate corresponding to the approach of atom A to
within a normal bonding distance of BC. By contrast, one can conceive
of a purely "repulsive" surface, according to which the entire heat of
reaction is liberated along the coordinate which corresponds to increasing
separation of the products, AB + C. Of course, the most probable path
across the potential-energy surface is not a strictly rectilinear one,
in which B decreases with oo constant, and then Tro increases with
g constant. The "attractive" versus "repulsive" criterion is used simply
as a means of characterizing the potential-energy surface.

The behavior of the H + X2 reaction was accounted for in terms of
a repulsive surface (6,8,10,57,60) by Nemeth, Polanyi, and their colleagues.
The potential-energy surface used in their work was based on an empirical
extension of the London-Eyring-Polanyi-Sato surface, and the atoms were
constrained to move in a plene. In order to save computer time, initial
conditions were varied systematically. Since the product energy distribu-
tion was very insensitive to the initial conditions (this is apparently a
characteristic of the repulsive, but not of the attractive surface (60))
statistical averaging was not essential.

A gradually repulsive surface which is a modified London-Eyring-

Polanyi-Sato potential-energy surface (60) gave on the average approxi-
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mately three percent of the heat of the H + Cl2 reaction as vibration
for planar motion, roughly in agreement with experiment (57). Further-
more, the surface did not possess an unreasonably prolonged HC1-Cl inter-
action in comparison with experimental data on the HCl-Argon repulsion (61).
Not all the potential-energy surfaces which imply a purely "repul-
sive" interaction between the product molecules lead to a channeling of
the heat of reaction into relative translation. It has recently been
pointed out (60,62) that a repulsive surface which has a sufficiently

steep outrun will lead to a substantial degree of vibrational excitation.

gpantum Mechanical Calculations of Reaction Cross-Sections

In comparison to the many classical mechanical treatments of
bimolecular exchange reactions, relatively few reactions of this type
have been studied quantum mechanically. As mentioned earlier, the calcu-
lation of reaction cross-sections by classical mechanics is dquite time
consuming, since the various molecular orientations and impact parameters
(nonenergetic initial conditions) require the investigations of a large
number of collisions. On the other hand, quantum mechanics offers an
alternative method of averaging directly over the nonenergetic initial
conditions. A new problem is encountered, however, in the form of the
highly complicated Schroedinger equation governing the nuclear motion.

Earlier Treatments

One of the earliest quantum mechanical studies was made by Golden
(63) who regarded both reactants and products (including electronic degrees
of freedom) as different states of the same quantum mechanical system

corresponding to different regions of configuration space, He then
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approximated the transition probability between these states by the first
order time-dependent perturbation theory of Dirac (64). Using the Born-
Oppenheimer separation (27) to uncouple the electronic and nuclear motions,
Golden obtained an explicit expression for the reaction rate in terms of
the reactant and product state functions and a "perturbing" interaction
between them. He also showed that the two above approximations enable
the deduction of:

(1) the adiabatic hypothesis;

(2) the dependence of the reaction rate upon the concentration of
the reactants;

(3) the condition for a vanishing reaction rate, which is equivalent
to the statistical mechanical condition for equilibrium; and

(k) the dependence of the chemical reaction rate upon the tempera-
ture.

Golden and Peiser (65) applied the above theory to the reaction
H2 + Br —» HBr + H at temperatures arowmd SOOOK. For the complete inter-
action potential of the reacting system, they used a simplified London-
Eyring-Polanyl type surface. The "perturbed" interaction appearing in the
expression for the transition probability is the complete potential minus
the H2 intramolecular interaction.

Now, the reactant and product state functions essentially vanish
except for configurations in which the Br - H (A - B) and H - H (B - C)
distances are in the neighborhood of their equilibrium values. Thus, it
was necessary only to consider the behavior of the "perturbing" potential
corresponding to this "equilibrium" configuration, so the "perturbing"

potential was replaced by its expansion around the equilibrium distances.
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Then, since the H - Br (A - B) and H - H (B - C) distances were
essentially the equilibrium values, the interaction between the outer
atoms Br and H (A and C) depended essentially upon the angle ABC. To
simplify calculations, Golden and Peiser crudely approximated the coulom-
bic and exchange integrals QAC and JAC’ by constant values Q:C and q:c.
Since the London-Eyring-Polanyi potential usually relies on the increase
in JAC’ upon the approach of A to BC, to produce the activation barrier,
this was a significant modification. Since the reaction H2 + Br - HBr + H
is highly endothermic, however, the overall activation barrier was not
seriously affected.

The reaction rate for H2 + Br - HBr + H did not appear to be sensi-
tive to the choice of JZC and QZC' The rate was far more sensitive, how-
ever, to the choice of the fraction of coulombic binding, x. Corresponding

to x = 0, the calculated rate was lO_u ce mole-l sec_l and then decreased

, -6 -1
monotonically with increasing x until, at x = 0.3, it was 10 = cc mole

sec ~. Because of the extreme sensitivity of the perturbation treatment
to the choice of ¥, Golden and Peiser never decided on a reaction rate.
Several other results were derived, however, which were not sensi-
tive to the assumed fraction of coulombic binding. It was found that the
variation of the absolute rate with temperature, as calculated at SOOOK,

agrees well with the observed variation. Surprisingly, approximately 95

percent of the rate of reaction appeared to come from those hydrogen mole-

cules in the first excited vibrational state. Furthermore, the distribution

of the initlially formed hydrogen bromide molecules were found to be repre-
sentable by a pseudo-Boltzmann distribution function with a "rotational

temperature" approximately one-half the initial temperature.
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Reactions of the same type as above (X + H, — HX + H, where X is

2
Br or C1) were studied by Bauer and Wu (66). For mathematical simplifica-
tion, the reactive collisions between H2 and X were treated as adiabatic
and collinear. Furthermore, since the activation energy Ea is empirically
of the order vibrational rather than rotational guanta, the authors
assumed that reaction involved an interchange of translational and vibra-
tional energy.

Beginning with the above assumptions, Bauer and Wu calculated the
rate of formation k# of short-lived activated states Héx# and then multi-
plied k# by the probability K of passing from the activated state into the
product state. The resulting product was said to equal the rate constant
k for the overall reaction. Assuming about equal probabilities of the
system in the state H2X# going back to the initial state or forward to
the final state, K was set equal to one-half. A comparison of k = %k#

was then made with simple collision theory, or

£ = PZ exp(-£ /RT) (2-18)

where Z is the statistical collision number and P is the steric factor
(67). The predicted steric factor resulting from the comparison was

about 8 x 1o'3

for both reactions (X = Cl, Br); this figure is dis-
appointly low.
Bauer and Wu also calculated the lifetime of the activated complex

to be about 5 x 10-12 seconds. As this corresponds to the time required

for 10-100 vibrations, this result is in total disagreement with classical



kinematics, which predicts a collision lifetime of the order of = single
vibration.

By using a high-speed computer, Mazur and Rubin (68) attemnted to
calculate the average quantum mechanical probability of the reaction
A + BC - AB + C for collinear collisions at a temperature T when BC is
initially in its ground or first excited vibrational state. The sverapge
reflers to the average over the distribution of the relative moments of
collisions between A and BC at temperature T. These authors used a pro-
cedure, involving the numerical solution of the time-dependent Schroedinger
equation, of sufficient generality to allow the use of any three-astom
potential energy surface. To save computer time, however, the surface
actually used was a highly simplified one involving three separate plateaux
(a reactant, an activated complex, and a product plateau). In the numer-
ical procedure, the motion of a wave packet across this surfuce was
analyzed. For comparison, a classical investigation of the reacting system
was made for the same potential-energy surface. When the reacting masses
were all set equal to that for hydrogen, the classical reaction-probability
was five times the quantum reaction-probability.

The immediate conclusion from the above results might be that
classical mechanics is inapplicable to chemical reactions, or at least
those involving light masses. It must be recalled, however, that the
simplified potential-energy surface involved finite discontinuities between
the plateaux, whereas actual potential-energy surfaces are thought to be
uniformly continuous. Thus, the work of Rubin and Mazur should be repeated
for more realistic potential-energy surfaces before any conclusions are

drawn concerning the validity of classical mechanics with respect to
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collisions of the type A + BC — AB + C.

Mortensen and Pitzer (69) carried out a numerical solution of the
time-independent Schroedinger equation for the reacting system H + H2 -
H2 + H. Employing a realistic potential-energy surface of the London-
Eyring-Polanyi-Sato type, they calculated the transmission coefficient,
Kij’ for several total energies and several values of the initial and
vibrational state, i and j. At first, strictly collinear collisions
were considered, reducing the Schroedinger equation to a two-variable
partial differential equation. Iater, a small angle bending term was
added to the Hamiltonian and the corresponding transmission coefficients
were calculated. The results obtained by Mortensen and Pitzer are pre-

sented in Table 1, with Kij tabulated versus i, j, and the total energy

E for collinear collisions with and without bending corrections.

Table 1. Transmission Coefficients at Various Total Energies
Kis
With Bending Correction  Without Bending Correction
E(kcal) i J
10 11 0.140 0.00586
11 11 0.65k4
1h 11 0.999 0.903
17.5 1 1 0.967
20 11 0.762
20 2 1 0.148
20 1 2 0.151
20 2 2 0.360

From these results they concluded that it was necessary to consider the

bending motion in the reactive configuration, especially at low energies.



Recent Contributions

All of the previously discussed quantum mechanical investigations
of bimolecular exchange reactions have included approximations with respect
to the nuclear motion. In recent years, several complicated treatments
(70-71) have accounted more rigorously for the multi-dimensionality of
the reactive collisions. For the most part, these efforts were executed
in the formalism of the quantum theory of collisions (25).

In studying the reactive collisions of H + H. - H2 + H, Tang (70)

2
employed both the distorted wave Born approximation and the perturbed
stationary state approximation* to derive expressions for the differential
reaction cross-sections. Because of the thermal neutrality of the above
exchange reaction, Tang intentionally omitted the possibility of vibra-
tional excitation from the formulation but did allow for the possibility of
rotational excitation.

Included in the formulas for the cross-sections were six-dimensional
transition integrals*, a few of which were evaluated by a high-speed com-
puter. Unfortunately, about forty hours of computer time were required to
evaluate only one of these six-dimensional integrals. Thus, to avoid the
use of a prohibitive amount of computer time, Tang calculated only a few
of the transition integrals by six-dimensicnal integration. He then intro-
duced what he called the "linear'" model which assumes that finite contribu-
tions to the transition integral results only from linear configurations
of the reacting system H + H2. Before integrating over the relative

orientation of the H2 molecule with respect to the H atom, a Dirac delta

*
For the definition of this terminology see Chapter IIT.



function (72) was included in the integrand of the transition integral to
insure that only the linear configuration made a finite contribution.

This manipulation reduced the dimensionality of the transition integral
from six to two, thus decreasing greatly the time required for numerical
integration. Tang calculated all of the differential reaction cross-
sections of interest by the "linear" model approach and compared the re-
sults with the limited results of the more rigorous six-dimensional pro-
cedure. He then computed the ratio L of the more rigorous cross-section
to the corresponding "linear" model cross-section. Tang's assumption was
that if all the "linear" model cross-sections were multiplied by T the
results would closely approximate the results of the six-dimensional inte-
gration procedure.

The results of the analysis just discussed indicated a high proba-
bility of back-scattering, i.e., the product H2 molecule recoils backward
in the direction from which the initial H atom approaches. Both the dis-
torted wave approximation and the perturbed stationary state approximation
gave the same qualitative results, but the latter method gave values for
the differential reactive cross-sections that were generally twenty times
greater than those obtained by the former method.

The potential energy surface used by Tang was probably the best
available for the H + H2 system--the potential energy surface of Karplus
and Porter (48) discussed previously in this chapter.

In conjunction with the molecular beam scattering experiments of
Ross, et al., Suplinskas (71) performed a quantum mechanical analysis of
the reactive collisions K + HBr - KBr + H. Beginning with the formal

theory of scattering, he developed a chemical analog to the core-core



interaction theory of Greider for nuclear collisions involving rearrange-
ments (73). Suplinskas eventually obtained an expression for the transi-
tion integral corresponding to the above reaction that was similar to the
results of the distorted wave Born approximation. A more detailed review
of this approach will be given in Chapter ITIT.

Suplinskas postulated a potential energy function for the KBr + H
system which included no interaction between H and K. An attenuation
factor was included in the expression for the potential-energy function
which weakened the KBr bond on the approach of H. Morse type interactions
(39) were assumed for the unperturbed HBr and KBr bonds.

Before evaluating the transition integrals Suplinskas alsoc neglected
the interaction between the product KBr molecule and the departing H atom.
This allowed strict separation of the translational motion between H and
KBr from the vibrational motion of KBr, and enabled the translational
motion to be represented by a plane wave function.

Also, the wave function corresponding to the distorted vibration of
KBr was approximated by a harmonic oscillator wave function with a Hooke's
law constant dependent on the distance between H and Br. This vibrationsl
wave function resulted from an additional approximation to the perturbed
stationary state approximation.

After obtaining an algebraic expression for the transition integral,
and therefore for the differential reaction cross-section, Suplinskas
integrated over the scattering angles to obtain an expression for the total
reaction cross-section. He evaluated the total reaction cross-section for
various initial translational and vibreational energies and final rotational

and vibrational energies. Only a single initial rotational state (the
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third excited state) for HBr was considered since it was assumed thzt the
total reaction cross-section was rclatively insensitive to the initial
rotational energy.

For an initial translational energy of 2.0 kcal/mole and an
initial vibrational energy corresponding to the ground state, Suplinskas
calculated the total cross-sections for reaction to form KBr in various
vibrational states. The reaction cross-sections corresponding to the
ground and first excited vibrational states were about 5.0 AE each, but
the cross-sections fell off rapidly for the more highly excited states
(0.3 §2 for the fifth excited state and 0.08 A2 for the seventh excited
state). This was expected, of course, since the exothermicity of the
reaction (4.2 keal/mole) is insufficient to produce KBr in the higher
excited states. For the same initial conditions, the distribution of the
reaction cross-sections with respect to the final rotational states of
KBr showed a somewhat sharp peak at the 70th excited rotational state.

When HBr was initially in the ground vibrational state, the total
cross-sections into all available states of KBr were determined b
Suplinskas to be about 37 ﬁg for an initial translational energy E . of

tr,i

1.0 kcal/mole, 10 AE for Etr 5 equal to 2.0 kcal/mole, and about 5.0 Ag

s -

for E__ ; equal to three, four, and five kecal/mole. Suplinskas attributed
>

the anomalously high values of the reaction cross-section at low values

of Etr 5 to the use of a plane wave to describe the relative translational
2

motion of H and KBr. This gave excessively high values for the exact wave

corresponding to H in close proximity with KBr. At low values of Etr 5o
2

and thus at low values of the total energy, the probability that H can be

very close to KBr is negligible, since repulsive forces become dominant at



close range. The cross-sections corresponding to the higher values of

Etr ; were considered to be in fair agreement with the experimental cross-
b

section of 32 i@ (19), considering the many assumptions included in the

calculations.
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CHAPTER TIII
THE QUANTUM THECRY OF SCATTERING

In their recent studies of reactive collisions, both Tang (70)
and Suplinskas (71) utilized the time-independent approach within the
formal theory of scattering. Gerjouy (74) and Lippmann (75) have been
the prime developers of the time-independent theory, while some crucial
points have been analyzed by Epstein (76). The time-dependent approach,
based mainly on the work of Gell-Mann and Goldberger (77), is admirably
reviewed by Wu and Ohmura (25) in their recent text on the quantum theory
of scattering.

As previously stated, the binary collisions are assumed to occur
independently, uninfluenced by any effects external to the colliding mole-

mr

N ~ PRI IR -~ 3 +1
cules. The Hamilbonian governing the beh

therefore not an explicit function of time, and the time-dependent and
time-independent formalisms lead to identical expressions for the reaction
cross-sections. Because it 1s less complicated conceptually, the fime;
independent approach will be used in the present study.

Explicit expressions for the reaction cross-sections derived ini
this chapter will be used for actual calculations in Chapter V. The
development herein closely follows that of Suplinskas (71) and is included
as a convenience to those readers unfamiliar with the quantum theory of

collisions.
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The Hamiltonian Operator

Consider the reactive collision A + BC — AB + C which is dia-
grammed in Figure 1. For discussion purposes, it is convenient to begin
with a classical mechanical description of the collision and to convert
later to guantum mechanics by using the appropriate postulates (78).

The Classical Mechanical Hamiltonian

In classical mechanics the time-independent Hamiltonian for the

motion of three particles A, B, C of masses my s mB, My s respectively, is

/
/‘f - — 2 + pa f‘ 2 ) 'f' _/__ . e . /3_1)
'ZmA(/)KA R?,q /JZA ,Z/?)B(/))(;; 1—/)78 t /28)

o 2 . 2 2 : ,
t ;l—/'-n(_(ﬁ(c 'fﬁ}c +f/_g) + V(XA’?A’ZA/XB/Lf,,*/Zg/XL/'T)‘/Z&)

Here, the coordinates Xps Ypo oo ZC

ar

]

the cartesian roordinates of

the particles A, B, and C in a reference frame stationary with resvect to

an observer, i.e., the laboratory frame. The symbols Popseees P, are the
linear moments conjugate to these coordinates (79). The potential-energy

function V is usually a function only of the three interatomic distances,

r

rAC’ and r S0

AB’ BC’®

Vv=V(r, ,r, r ) (3-2)

where
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Expressions similar to Equation (3—3) define TBC and rAC'
The canonical equations of motion are given by (80)
P = — dH/IX; (3-4)

D . = - JH/dj

[~
P = TAH/dZ
and
X; = JdH/dp,; (3-5)

J H/O/P?L

aT
&
1]

Z. = dH/dp,.

If a classical description of the collision is desired, Equations (3-4)
and (3-5) can be integrated to yield XA’ YA’ cees ZC and PXA’ PYA’ e

PZC as functions of time, provided the initial values are specified for

these variables.



Coordinate System for Initial Stage of Reactive Collision. When

considering the collision of a molecule BC with an oncoming atom A, it

1s convenient to use a different set of coordinates (80). The new set of

coordinates are:

1. The center of mass coordinates of the entire system

>( = (mA )(A + /'778)(8 tomox, )/(mA + Mo+ P, )

y = (mA u‘}A + h78 L},; F ,,y)L L)L )/’ ( ’”A + /))b' 1A )

L = (MA Lyt Mgl t I ZL)/(MA Byt "”c)

2. The components of the vector between atoms B and C, ;£C

B¢
T = 1 't

Zg = e 2

The components of the vector R between atom A and the center

3.

of mass of BC
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R = XA'(th)(s-}-m‘xc)/(mB;.mc) (3-8)

X
/2? :-‘7% - ( h%‘jk +—nt-?‘)//(nu;+’ﬂ_)

- — 7 P
/ez = 2, (ms g T M e )/(”’e*”’c)
These new coordinates are such that Hamilton's equations, Equations
(3-4) and (3-5), are invariant under the transformution. Also, by select-
ing a reference frame in which the center of mass coordinates remain con-

stant, i.e., the center of mass system, the new Hamiltonian takes the form

(80)

/ .

- — PR | L A 2 L L , i O £ e
H—Z/Ll‘. (/7‘ f—B- +R)+l'"8C(P‘/ }/)5 r/)(:)f_\‘(rliglrg(./’/,c) T
where

/u; = /7)A (mg + m ) /( h)A t 1778 b ) (3-10)
m = Pgme /( Pyt ome ) (3-11)

C

The symbols ISE p2, cee p6 denote the momenta conjugate to the ccordinates
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respectively.

Coordinate System for the Final Stage of

8¢

‘}8 [

Reactive Collisicons.

3

(3-12)

To

keep track of the motion of the products of the reaction A + BC, AB + c,

another coordinate system should be introduced.

The coordinate system is

the same as that used in the initial stage, excent that the set of vari-

ables used within that coordinate system is changed.

In this case, the

vector 5 is defined as the vector between atom C and the center of mass

of AB. The components of E are



T

O
1

o . (3-13)
)(C (/77Afome8)/(knA+mB)

<o
1

Lfc, - (mAvA + /ng ‘jrg)/(ynA f-n;g)

|
fi = ZL - (h’)A ZA t /'HB ib’ )/(,‘);A + /';;H)

and the components of the vector ;AB between atoms A and B are

Yw = a1

7 = 7 -2

AR A B

Then the Hamiltonian governing the motion of A, B, and C can be

(80) as

written

/,
JE - 22 L s e, , (3-15)
M= ap (el e gt ) vt e )

2 1n
AR

+ V (r‘ )

A8 / 'H{/ ’A( )

where
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l= P (h +m : . $3-18)
/; a A 3>/(/”A7'/Nb)1‘ ’”4)
.= pl o (3-17)
g A H/(mA—f—mB)
The momenta pl, pg, ceey p6 are conjugate to the coordinates
lé’ =~ X (3-18)

G0k

~
(\
Lon
I
N
A

respectively.

Like the coordinate transformations of Equations (3-7) and (3-8),

Bquations (3-13) and (3-14) are invariant under the transformations just
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described,

The Quantum Mechanical Hamiltonian Operators

The following equations represent well known quantum mechanical
postulates (78) for conversion of classical mechanical variables to quan-

fum mechanical operators:

where g is a classical position coordinate and p is its conjugate momentur.
Subjecting Equations (3-9) and (3-15) to the prescription given b, Equations
(3-19) and (3-20) yields the following expressions for the quantum mechani-
cal operators appropriate to the initial and final stage of the collision,

respectively:

oot s 2 R .
R A ; : 3-21
Hom G % v v ) (01
X £ ‘71 e v L
= ' . + V(P i (3-22)

Here,
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(3-24)

N
it

| DR +ks v ]

Since the potential energy functions and the Hamiltonian operators are the

same,
2 L2 ,K;L '_L
LA R ’Unﬁc i~ A/J{ % J/HAB rs

Schroedinger Equation Appropriate to Initial Stage of Collision

Taking note of Equation (3—21), the Schroedinger equation for the

reactive collision A + BC — AB + C, can be written as

Aoge_ £ or Lo o e -
- Y7 am Vet VIR, 1) | §(R, ) (3-26)

e B

LN
s

= £ YR i)

where Y(ﬁ, ;BC) is the total wave function for the system, and E denotes
the total energy of the system. An important boundary condition imposed
on Y(ﬁ, ;éc) is the initial asymptotic condition. Since the interaction

between the colliding molecules is negligible for large R, the initial
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asymptotic condition for the wave function can be represented as a product
of wave functions corresponding to the free relative motion between A and
BC and the internal states of A and BC. All molecules are assumed to be

in their ground electronic states so A is regarded as a structureless mass.
The diatomic molecule can be approximated as a rigid rotator, Morse oscilla-
can be

N
s

tor (81). Thus, the initial asymptotic condition for ¥(R BC)

written as

w = Lim YR )= ex/J(xqéz-ﬁ) y{f"‘(agc,gc)Zn‘,(@C) (3-27)

A R’w

m,
where Yll(eBC’ ¢BC) denotes the spherical harmonic function ocrresponding

to the rigid rotation of BC, and Zn.(rBC) denotes the Morse oscillator
function corresponding to the vibraiion of BC. The symbols ni, li, and mi
denote the vibrational, angular momentum, and Z-component of angular momen-
tum quantum numbers, respectively, for the BC molecule. 8 and ¢BC are,

BC

of course, the angular components of ;éc in spherical coordinates (see
Figure 1). The vector Ei’ the wave vector, has the direction of ;i and
the magnitude (pi/fi) v, .

One of the most familiar results of quantum mechanics is that if the
total wave function is a product of wave functions corresponding to differ-
ent modes of motion, then the total energy is the sum of the separate ener-
gies for these particular modes. Thus, in the initial asymptotic case
above, the total energy is the sum of the relative translational energy of

approach, the vibrational energy of the molecule BC, and the rotational

energy of BC, provided the ground electronic states of A and BC are taken
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as zero energy.

Schroedinger Equation Appropriate to Final Stage of Collision

The product wave function represents the collision system when the
product molecules have reached such large separations that no intermolecular
interaction exists. To account for all the various probabilities of the
collision results, the post-collision wave function must include the sum
of terms corresponding to molecules which are the products of elastic,
inelastic, and reactive scattering. After the collision has occurred, the
product molecules might still be A and BC, with BC either in a different
internal state or not, or some chemical rearrangement might have taken
place to form, say, atom C and molecule AB. By visuvalizing a detector
which can distinguish between different chemical types of molecules and
their internal states, attention can be focused on a single term in the
product wave function representing the particular species of molecule de-
tected.

Consider now the collision leading to the atom C and the diatomic

molecule AB with vibrational quantum number n. and rotational quantum

f

numbers 1, and m.. Using Equation (3-22) one can write the Schroedinger

equation as

_ £ 2 _ _’él VAl P = O/ - (3-28)
[ 2, VP 2 /g V"Ag i V(P/'Ze)} ( /'ng>
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As P approaches infinity, the interaction between A and BC vanishes so

that the final asymptotic expression for the total wave function can be

written as

({c= Lim ®(P,r,) (3-29)
preo

U

£, @ ¢) [exe : 4P)/P1 2, (r,) RO

where @ and ¢ are the deflection angles in the center of mass system (see
Figure 1). The first two factors on the right side of Equation (3-29)
correspond to the relative translational motion of AB and C. Particle

flux is conserved by exp(ika)/P, in which the wave vector kf has the

and the magnitude (p,f/‘}'i)vf.

-

direction of the final relative mom velocity vf
The factor f%(@, $), called the scattering amplitude, takes into account
the anisotropic scattering caused by the peculiarities of the initial con-
ditions and the potential energy function. On f;(@, $), the superscript
i denotes the set of initial conditions n,» li’ m, ki’ and the subscript
f denotes the set of final conditions n

£ lfa m

The Cross-Section and the Scattering Amplitude

£

A very important relationship between the differential reaction
cross-section mentioned in Equation (1-8) and the scattering amplitude of

Equation (3-29) will now be presented:
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e 4 . i 2
¢¥(®,q§) = 713 7/2_ /ﬂ (©,¢)] (3-30)

The derivation of this expression will be omitted since it is rather
lengthy and is thoroughly treated in most standard textbooks on quantum
mechanics (82).

The quantum mechanical treatment of the reaction cross-section is
now reduced to the quest for the wave functions, possessing the correct
asymptotic form, of the complete system Hamiltonian. Once these wave func-
tions are found, the scattering amplitudes f%(@, ¢) can be obtained by
comparing the wave functions, in the limit of infinite P, with Equation
(3-29). Of course, very few wave equations of the fype represented by
Equations (3-26) and (3-28) are analytically solvable, and suitable methods
of approximation must be sought.

It is very difficult to make intelligent and intuitive approxima-
tions with the Schroedinger equation in the form of Equation (3-26) or
Equation (3-28). A more suitable formalism for analyzing the exact nature
of proposed approximations can be obtained by recasting the Schroedinger
equation in the form of an integral equation. This is the approach taken
in the following section, which contains a discussion on the approximate

methods appropriate for exchange collisions of the type A + BC - AB + C.

The Differential Reaction Cross-Section

At this point it is appropriate to present expressions for the
scattering amplitude in terms of the solutions to the Schroedinger equa-

tion governing the collision A + BC - AB + C. B8ince extensive derivations
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of the equations that follow appear in many sources (83), no attempt will
be made to repeat the derivations in the present study. For the purposes

here, the two most important expressions for the scattering amplitude are:

F @®,9) =

N NI AD (351

« 877 P) S d

and .

fl@d)-(ZE) v (7, 7) a6, 7) (-2

’

< W(E,,P) LE] ISP

Here, the function T;, 1s the solution to Equation (3-28) having the

asymptotic condition

Lim ¥ (7, B)= exp(i 4 -F) Z, ( )y% 6 ) (3

P—-oao AB/ A8

+ 7((@ 43)[exp( #P)/PJZ (r )’(( e/ 0, )
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where the factor £(@, &) multiplying the incoming wave function is an
elastic scattering emplitude. The potential functions‘ai(rAB, P) and

Uf(rAB’ P) are defined as

a,; (ag/ﬁ) = V( ﬁs/ P)- V,qg(';e) (3-34)
and

&¥<E8/7) = V(aa/ls)_ vac(’;m) (3-35)
whefe A

AR and VBC are the ground state potentials for molecules AB and
BC, respectively. |

Using Equation (3-30), one can now write

. AN A L . — T
¢;(®/é)=(_i7t,ﬁl> —;i _/L_(L I[/m i (P+c/3; JJP (3-36)

£ . . A&

or

‘ M‘ * % " - —_ sy ol L
< M

The remaining task is now to find either of the total wave functions

Y; or Y;. For realistic potential-energy surfaces, exact solutions to

Equations (3-26) or (3-28) are practically unobtainable. Thus, an appro-

priate method of approximation must be used which avoids the mathematical
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barriers of the exact problem but still yields physically meeningful re-
sults. Such a method 1s the perturbed stationary state approximation
originally proposed by Mott (84). This approach was taken by Suplinskas
(71) in his study of the K + HBr — KBr + H reaction but was only discussed
by Teng (70) in his study of the H + H2 - H2 + H reaction. Chapters IV
and V will demonstrate how the perturbed stationary state approximation can
be applied to the study of a highly exothermic reaction such as H + Br. -

2
HBr + Br.

Perturbed Stationary State Approximation

The perturbed stationary state approximation was formulated by Mott,
Massey, and Bates (84, 85, 86) to attack those problems involving the slow
collision of an atom, ion, or molecule with another such particle. Although
this method is theoretically rigorous, various approximations must be made
to avoid overwhelming mathematical difficulties. Below is an outline of
the theory as applied to the reactive collision A + BC - C + AB. First,
however, a discussion of the distorted wave method will be given because
of its prominence in some of the previous applications of the perturbed
stationary state approximation.

The Distorted Wave Method

Sometimes it is possible to obtain an exact solution to Equation
(3-26) if some part of the potential can be neglected. For instance, since
the Born-Oppenheimer separation has been assumed, the complete potential

for the exchange reaction A + BC - AB + C can be written as

V = VAB vV, F Vo + Vyge (3-38)
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The two-body potentials VAB’ Véc, VAC are identical to the potentials for
the 1soleted diatomic molecules AB, AC, and BC, respectively.. The three-

" body potentiel YABC is defined as the deviation of the sum of the two-
body potentials from the complete potential V when all three atoms are in

the same vicinity.

Now, suppose the three-body interaction term V

ARC can be partitioned

into two perts as

' *
Here, it is assumed that Vé is predominantly an interaction between A and
*
B, while Vb is primarily an interaction between B and C.

Now, define the function KI(Fgc, R) as the solution to

_."_ti: 2 —£1 2 * + +
[ PV - I’-’;cv%c + VBC "F\i })\‘ = £ AA' (3')40)

with the asymptotic condition given by Equation (3-27). Further, define

the function K;(;AB’ P) as the solution to

;fii_ N L * - - L
[_2/’;‘7” T’:;Bv'fw VTR ])‘(- —E)‘c )

with the asymptotic condition given by Equation (3-29). Then, it has
been shown by Greider (73) that, to a first order approximation, one can

write
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, A 2 - -
cr;(®,@)= f(f%) ’/f/\ u )\ c/;;f’ {l (3-42)

This is known as the distorted wave method and is particularly useful if
exact solutions to Equations (3-40) and (3-41) can be found.

The "Linear" Model of Tang

Even if the exact wave functions ?; and ?; were known, it would be
practically impossible to evaluate the integrals of Equation (3-36) and
(3-37) due to the unfactorable six-dimensional integrands., Thus, some
reasonable approximation designed to simplify this integrand integration
would be extremely welcome.

Using the distorted wave method, Tang (70) assumed thet both hI
and x; essentially vanished unless By =T - O and Gpp =T+ By (see
Figure 1). Thus, he replaced the element of volume d3;

AB

Here, 8(a, b) is a Dirac

in Equation (3-42)

with C 8(m - 05> eAB),

delta function defined as

2
(T + 85 8,5) T drpp-

SEFG) Stay8) db = Fla) i)

and C is a constant. Tang discovered that this model resulted in consider-
able simplification of the integral of Equation (3-42), The parameter C
was adjusted so that c%(@, 3) agreed with the results of a long, tedious,
six-dimensional integration of Equation (3-42) by high-speed computer.

The "Two-Dimensional Interaction" Model of Suplinskas

Suplinskas (71), in his study of the X + HBr — KBr + H reactive
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collislon, neglected the interaction between the potassium and the hydro-
gen atoms, thus reducing the potentialt_Jf in Equation (3-35) from a three-
dimensional to a two-dimensional function. This approximation also im-
plies the unhindered rotation of KBr in the proximity of H. Thus, consi-
derable simplification of Equation (3-37) resulted from the use of this

model.

The "Linear Complex" Model

The "linear complex" model will be applied to the study of triatomic,
exothermic, bimolecular reactions in the next chapter. It is based on the
same assumption as the "linear" model of Tang; that is, the chemical forces
tend to align the system A + B + C as A approaches BC. When the AB inter-
atomic distance becomes approximaetely that of a free, unperturbed AB mole-
cule, the three atoms ABC are assumed to be rigidly locked in a linear
configuration. Since the complicated électronic and nuclear motions lead-
ing to reaction are assumed to occur when the atoms are in this compact
arrangement, the effective potential of the "reactive" configuration is
VL(?AB’ P), the potential-energy function for three atoms constrained to
a straight line. Thus, as will be shown in the next chapter, it should be

valid to replace T; in Equation (3-37) by x;, the solution to the problem

X~ = - -4y
[ Ko+ Ky # Y TX =L X (3-bk)
Here, K? is the relative translational kinetic energy operator -(1{2/2uf)
2 R . . . . 2 2
Vp, KAB is the vibrational kinetic energy operator -(h /ZmAB) V. »>8&ndE

is the total energy of the colliding system. The asymptotic condition for
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X; 1s Equation (3-33).

The guiding concept of the perturbed stationary state approximation
- 1s that the relative translational velocities of the colliding aggregates
are extremely slow compared to the internal motions of the particles.
Thus, the relative motion of AB and C is assumed to be adiabatic with
respect to the vibrational motion of AB, and X; will be most appropriately

expanded in terms of the molecular wave functions z ( P) which are the

q .
n'\AR’?

eigenfunctions, for fixed P, of

A8

[Kag+ Y (e, P)] 2(F,;P) = €,(P) 2Zhy; P) (3-45)

en(P) denotes the internal energies of AB at a given P, and the Zn(;ABs P)

form a complete set of functions of r,_ for any fixed P. Asymptotically,

AB
for large P,
. _— N
Lim €, (p) =, (3-16)
Lim 2,(Fg;P) = & (77,) (3-17)
pP->c0

where En’ Cn(;AB) are the energy and eigenfunction of the unpertufbed mole-
cule AB in the state n, The boundary conditions for the Zn(; ; P) are

the same as those for the gn(FAB)'

Since
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7 (rAs/P) = \Qe(';e) U, ('743//9) (3-48)

where Ui L(?AB’ P) is the linear configuration form of the three-dimen-

b
sional potential U, > Equation (3-45) would be the Schroedinger equation
for the Q (; B) functions if the atom C were sufficiently removed from AB

to cause U, s P) to vanish. This perturbation of AB by C gives the

,L( AB

perturbed stationary state approximation its name, although the perturbing

potential Ui L is generally too large to handle by straightforward applica-
b

tion of perturbation theory (87).

If ¢ (P) and z ( P) can be obtained by solving Equation (3-45),

TpB?
then the function xf may be expanded in terms of the z ( g P) as
- D) = P r . -
X; (,"Ae/'P) = L G,.(P Zh’(AB/P) (3-k9)

Substituting Equation (3-49) into Equation (3-44), multiplying by z (rAB’ P)

and integrating over r

AB? yields

ES

:fi_ 2 \ - 15:- Py
[,z,u‘ V, +E- én(P)] G (F)= hZ Ap, C,.,,,,(F/ 5,,,(P) (3-50)
where the Cnn' are the operators

x adi _ " 2 — _
Cn,w(P) = —/Z” Z’ Zh’ d rAe VP /Zn VP zn’ Jj’; (3-51)
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The functions Zn(;AB; P) can be appropriately named the static field
diatomic weve functions since they represent the rotational and vibrational
- motion of AB which is stationary relative to the atom C. On the other hand,
the functions Gn(ﬁ) should be called the translational motion coefficients
since they account for the motion of ¢ relative to AB.

In Chapter IV, suitable approximations will be made to facilitate
the solution of both Equation (3-45) and Equation (3-50) for the case of

the highly exothermic reactions of the type A + BC — AB + C.
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CHAPTER IV

DETERMINATION OF REACTION CROSS-SECTIONS
FOR TRIATOMIC, EXOTHERMIC REACTIONS

Perturbed Morse Oscillator Method

As mentioned in the last few paragraphs of the previous chapter,
the wave function of Equation (3-&&) will be applicable to the method
presented herein for determination of the reaction cross-sections. The
discussion in the present chapter will be concerned first with obtaining
the solutions zn(;AB’P) to Equation (3-45). Even though the variable P
is treated as a parameter in the perturbed stationary state method, the
lfunctional complexity of Vi(rAB,P) discourages an analytical attack on
Egquation (3-45). On the other hand, a direct numerical procedure, such as
the Numerov method (88), would consume a considerable amount of computer
time since the solutions Zn(;AB’P) are required for many closely-spaced
values of P, A possible answer to this dilemma could lie in the affinity
of atom A for B. In highly exothermic reactions A + BC — AB + C, one might
expect the A atom to remain tightly bound to the B atom even when C is in
fairly close proximity. A recent semiempirical calculation (9) of the
potential-energy surface for H + X2 - HX + X (where X = F, C1, Br, and I)
indicated that this was the case. Furthermore, even when the distance be-
tween B and C approached zero (that is to say, P = 0), the function
Vi(;AB,P) still re ained the Morse function form shown in Figure 2. Thus,
the standard perturbation theory for eigenvalue problems in quantum me-

chanics can be made applicable to the solution of Equation (3-45) in the
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Perturbed AB Interaction When C is in Close Proximity .
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menner to be outlined below.

The magnitude of Vt( P) for small values of P is such that these

AB’
configurations are classically inaccessible. In the perturbed stationary
state approximation, this phenomenon should be manifested by high values

of the eigenvalues en(P) when P is small.

"Linear Complex" Model Wave Function

From Equation (3-48) it is seen that, for sufficiently small-valued

Uy L(?AB’P)’ ordinary perturbation theory (87) could be applied easily and
b

directly to the solution of Equation (3-L5). The zero-order wave functions

required in the calculation would merely be the solutions Cn(;AB) of Equa-

tion (3-47). However, as mentioned in Chapter IV, the interaction Ui L is
J
seldom negligible compared to URY and, based on the work of Ellison (9),

this seems to be the case for several exothermic reactions.

Partitioning of the Potential-Energy. Perturbation theory can be

made applicable to the solution of Equation (3-U45) by taking a different
approach., As a beginning, the potential-energy function Vi(rAB’P) should

be partitioned into

Vo (hgs P) =V, (54, P) + V, (1, P) (1)

where

v, (rAB,p) = \/L(’qu/P) =V, (e P) (L-2)

and
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A
. — - _ £ ! . )-l--
Vi (g ) P) —D(P)gl- exp[ a(P)(1,, QB(P))]} + U, (P (43)
For constant P, Vﬁ(rAB’P) has the form of a Morse potential with P-depen-
dent parameters, and since the Schroedinger equation for a Morse function

oscillator has been solved by ter Haar (81), the solutions to the boundary

value problem

[KAB +VM('28/P)] Z:(EB/P) :é/:(P)Zl:(ag/P) (4-L)
Z': (;-:B/. P) = 0 when Chg = o (4-5)
Zo (7, p) =0 Whe LgTe (1-6)

can be obtained at every value of constant P from ter Haar's solutions.

The zg(; ;P) can be used as zero-order wave functions in a second-order

perturbation calculation of the solutions Zn(; 3P) of Equation (3-.45).
The physicel meaning of the parameters D(P), riB(P), and Um(P) is

indicated in Figure 3, which depicts a typical curve of VL( P) at con-

TpAR?

stent P from Ellison's treatment of H + Br, = HBr + Br (9).

2
Assuming that Vi(;AB,P) retains definite Morse curve features for
exothermic, triatomic reactions in general, it should be possible to

partition the potential-energy surface for a large number of these reac-



2

vy, gram ﬂz/sec

7>

Um(;)

Figure 3. Parameters Used to Fit VM to VL .
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tions. Furthermore, proper adjustment of the parameters D(P), a(P),
E . .
rAB(P), and Um(P) can render Vé(rAB,P) negligible compared with VM(;AB,P).

Very good values for UM(P), rﬁB(P), and D(P) can be obtained by reading

directly from the plot of Vi(gAB,P) Versus r,q for fixed P. The parameter
a(P) can then be calculated from points on the Vi(rAB’P) curve by the
relationship
+ VL(GQ/P)‘um(p)
- D(P)
alp) = . < (7) (4-7)
A8~ ‘s

obtained from Equation (4-3). The plus sign is to be used for points to
the right of riB(P), and the negative sign is used for points to the left
of ;EB(P). Preferably, the point used in Equation (4-7) should be at some

distance r,p to the left of ;EB(P). Then the function VM(r ,P) will fit

snugly to the function Vt(r sP) in the region of steepest slope (rAB <

rfB) and fairly close to VL(rAB,P) in the region of more gradual slope

E s . . \
Thg Z.FAB)' Fitting the function VM(rAB’P) to the function VL(;AB,P) in
this manner has the effect of minimizing V?(gAB,P). If some point at

E .
Tpp 2 Tpp 18 used to determine a(P), the slope of VM(;AB,P) to the left

2
E
of T Thp

case, Thus, due to the steepness of the slope in this region, a small

will not coincide as well with that of Vi( P) as in the former
deviation in slope corresponds to a large valued function V?(rAB,P). In
the limit of large P, the parametric functions a(P), D(P), Um(P), and

rfB(P) should approach the corresponding Morse parameters for the unper-
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turbed AB molecule.

The Zero-Order Wave Functions. As mentioned above, ter Haar (81)

- obtained an almost analytical solution to the system of equations

3
T v | R LR A

9% (C%) = Qé: (CCL) =0

which describes the motion of a rigid rotator-Morse oscillator. Here,

r is the interatomic distance, p is the reduced mass, rE is the equili-
brium interatomic distance, and D and a are the Morse parameters. Since
the derivation of the solutions to Equation (4-8) is rather lenghty, the
reader is referred to the original paper by ter Haar (81). In this work

the results will be written down in the form of solutions to Equation

(4-8) as follows:

2 (s P) =y (P) R; (e 7)) ‘(9,.6,48) (4-9)
= 2 (2¢) \ - (n +Yz) (L-10)
e (P) = 1) (n, +Y2) —{W— rU P +e

m

where N° (P) is a normalizing constant and Y f(e » §,.) is the wave
nf lf AB’° "AB
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function corresponding to the assumed rigid rotation of AB in the field

of C. From standard textbooks in quentum chemistry (89), it is shown

- that

(u‘- l)(,&-m{.)! }vz

m m "k
Xe‘_’c(em/@c) = ('I) i [47! (I‘F‘Hn;),’ PJI (cos eAe) (h-11)

f

x exp(i ” 943)

m
where Plf(cos eAB) is the assoclated Legendre polynomial defined as
£

: m /2 L. +m ?
P (u) = U;ul) ; ! 49 fm (u;_,)«‘/ [ul 2] (4-12)
£ 2% 4! dJu F ¥
The radially dependent factor RZ (;AB;P) is

f

AP DCP] ~(n +1a) |
R;.F(I;B/- P) = exp(-X/2) (X/2) M"F(’zcl@/')()/ﬁa (L-13)

where

X = 2 AP) [D(F expl-alf(r,,- e (P) )] (b-11)



AP) = [z(—:";:j"j—:;g)/x‘]\'L/a(P)

and

(-7,) Cn)n+1) 2
cX) = f X
M, 8;%)= 1+ g x + —Ft— X
s Cn)Cng+i) Bngr2) s L

g (B+1) (B+2) 3!

Here,

B =2AP)o(F —2n

Equation (L4-16) is the confluent hypergeometric function (90)

M@, g;X) = | + X + dldry)  x*

B(g+1) 71

ala+1)(x+2) ¥’
8 (g+1) (gta) 3!

+ -

for the case where
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(k-15)

(L4-16)

(4-17)

(4-18)
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The normelizing factors are obtained by numerical integration of

\L
Nn:(P) = //{I[R:’;(GB/"D)]z CI; J;e} / (k-20)

Assuming that the equilibrium interatomic distance rﬁB(P) does not differ
greatly from ;ﬁB(m), the last term on the right side of Equation (4-10)

can be approximated as (91)

2
= tl) - o +/, 1)- 254 t1) h-21
€= B G (4 H1) =0 (R B) L (Gr1)-T, 404 (h-21)
where BAB’ XY and :AB are the spectroscopic rotational constants (92)

of AB. On the right side of Equation (4-21), the first term corresponds
to the energy levels of a rigid rotor, the second term corrects for the
anharmonicity of a Morse oscillator, and the third term corrects for
centrifugal force,

Improvement of the Zero-Order Eigenfunctions and Eigenvalues. The

results of Equations (4-9) and (4-10) can be used in conjundtion with
second-order perturbation theory to correct for the nonvenishing of
Vf(rAB’P)' Only second-order perturbation theory need be considered since
rapid convergence is assured by the careful adjustment of the parameters

E -
a(P), rAB(P)’ D(P), and Uﬁ(P) to make VP(rAB,P) negligible compared to
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VM(rAB,P).

Since the perturbing potential p (r B,P) does not depend on the

- angles © "y QAB’ only the radially dependent eigenfunctions R (r AB,P)

where RC ( AB,P) denotes the orthonormal product N ( AB,P) R AB,P),

must be subaected to the perturbation treatment. From Equatlon (k-10),

the zero-order eigenvalues corresponding to the §§ (;AB;P) are

o JD(P ( +0L .
vt (P = 2500y (g +1) = Aﬁ(P} + U7 o

which are nondegenerate. Thus, due to the orthogonality of the zero-

order eigenfunctions ﬁg (;AB;P), the radially dependent factor of the
f

static field diatomic eigenfunctions may be approximated by the second-

order perturbation relations for nondegenerate states (93) as

N, "(P)
P)= R, (r,;P)+ Z Y

; n
f f éﬁ,v%(m

R (i;w,

(L-
@) ) (4-23)

vd

} 4 [Eo .‘(P)-é;/v;blp)][e;; viA(P).-é: VIZ(P)}
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and the corresponding eigenvalues are

2
Xs [V, . (P)
() =€ (P + V: , (P + Z [ i T (4-2L)
n ) vib ng Vi " Z é”{,vlb(ﬁ-éi,vib(P)
where
OO._.O* ) - )
Vii)}(P) =[ R g; PIV,y (g, P)R(r P 0 diy (1-25)

A prime following a summation symbol specifies the omission from the

summation of the term corresponding to the vibrational state . The

symbol N denotes the highest vibrational state included in the set of
basis functions ﬁz (r,_;P) used in the perturbation treatment.

f
The static field diatomic eigenfunctions and eigenvalues are now

approximated as

- _ . m ot
2, (a1 F) = Mo (P) Ry (1,05 7) Y ¥ (s, ,8,) (-26)

and



€ () = € (Pl +B K (R+1) ot (n+%)h (J+1)  (w2D)

2 2
-7;3 ,é:( (f&H)

where Nn (P) is the normalization constant computed numerically from
f

N, (P) = TR, 2] 2 e [ (1-28)

For convenience, the perturbed vibrational functions will be written

hereafter in the normalized form.ﬁh (r,.;P) = N (P) R (r
i e
Approximation of the Translational Motion Coeff1c1ents

AB, )

After expressions for the static field diatomic eigenfunctions and
eigenvalues have been obtained from Equations (L4-23) and (4-24), respec-
tively, they can be substituted into Equation (3-51) in order to determine
the tganslational motion coefficients Gn(ﬁ). To avoid mathematical mayhem,
however, some way must be found to uncouple the system of differential
equations represented by Equation (3-50).

The analysis of Equation (3-50) begins by operating upon z ( T,

55P)

with VP and then Vg to obtain

— - "-’F o,Rn oy L.
‘;; 2:h (tke J /D) - ?é (Eie/ @lg) —:77;£- <gP (4-29)
e
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where gé is the unit vector in the direction 5, and

2 — VL d*R, bie
vP Zn(':IB;P) - X(:(e,qg/@g) -TP_’“L (4-30)

Since the scalar product of p zn(yAB;P) and vy Gn(P) within Equation

(3- ) can be written as

JR,

Ve Zh(ae,'/’) v Gn,(P/ = Ye“(e“,gg a"/J .dd(;,,a (4-31)

the action of the operators c, n'(P) upon Gn(ﬁ) can be expressed as
M

By = [°°— , 7 (4-32)
Cn,n’(P) G,.(P) 2. 4Ry iy - 46 (P)
°© t op s A8 yp

5 d'R, |
—okné—??% [;zdr 6,’,(P)

Equation (3- ) can now be written
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w o R, J G, (P)
- , L . / e
[v; + 4 -U,(pP)] 6,(P) = | R 77 s I (4-33)

ne % e A
where
2 2 M l
= -3k
4, e [E"én("o)] 3
and

i, () = l;g [én(P)— é,,(oo)} (4-35)

Here, the en(w) are the eigenvalues En for the unperturbed molecule AB

in tHe state n.

The Coupling Qperators. At this point it is appropriate to dis-

cuss the action of the coupling operators Cnm(P) on the set of functions

ﬁh (r;P). For the case of H + Br, — HBr + Br, the integrals on the right
f

side of Equation (4-33) were evaluated numerically for né = 3,5 and n, =

0 to ne = T. The results are listed in Table 2, where
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Table 2, Maximum Absolute Values of the Coupling Integrals
With Respect to P, the Distance Between AB and C
fé ng I, &t 1,, &2
3 0 0.08762 0.00532
3 1 0.31132 0.07224
3 2 0.47521 0.081k47
3 3 0.02775 0.00031
3 b 1.66391 0.09382
3 5 0.69823 0.07182
3 6 0.39168 0.04229
3 7 0.21797 0.02799
5 0 0.07359 0.00388
5 1 0.17225 0.0L4211
5 2 0.19625 0.05223
5 3 0.31k62 0.07616
5 L 0.5668k4 0.05179
5 0.98992 0.10017
W5 6 0.334k23 0.04718
> 7 0.22965 0.02994
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I (p) =of°°,é _e e (L-36)

= % dzﬁhl k= (4-37)
I:z(P) ’[ Ienf “‘—Ldp.z Fae Jﬁe

To save space only the maximum absolute values of Il and 12 with respect
to P are reported. As can be seen, none of the integrals Il exceed

1.664 it in absolute value, and the integrals I, are even smaller. Be-

2
cause the value of ki - ﬁ;(P) will usually exceed 1000 ﬁ-a, and since the
maximum absolute value of aGn(ﬁ)/aP is not expected to be greater than

lO'A-l, approximations to Gn(ﬁ) could be obtained from

[v,} + 4,,1 - Z?,,(P)} 6, (p) =0 (4-38)

Of course, it 1s difficult to evaluate the effect of neglecting
all t?e coupling coefficients. As in the closely related two-state approx-
imation (94-95), the reasonable assumption that coupling can be neglected
is due primarily to mathematical necessity.

Partial Wave Analysis. It is now convenient to restate the

%
asymptotic condition for Xp ( P) corresponding to the formation of AB

Ny
in the state n:
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Lim X'(1,;0)= @44 P | 20UAR) £ 41077 (9

pP-roo

Now, in Equation (3- ) xf ( AB,P) has also been written as an expansion

in the complete set of functions z ( ;P), and since

TaB’

! i Z:(rB,P) ; ( (4-40)

one can write the following asymptotic equation:

G, (F)= expl-i £-F) + £@58)expl: 4P)/P  (v-10)

Now the problem of the translational motion coefficients has been
reduced to the task of solving Equation (4-38) subject to the asymptotic
condition given in Equation (4-41). A partial wave method (96) similar
to that for elastic scattering by a central potential is the most straight-
forward procedure. If o represents the common-plane angle between the

vectors B and En’ then

exp ik, P)=<expl-ik, P cos o) (-12)

As P approaches infinity, o tends to zero and eP and ¢P approach ® and §,

respectively (see Figure 1). Expansion of the incoming wave function in
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Equation (4-42) in terms of Legendre polynomials (96) and subsequent use

of the addition theorem of spherical harmonics (97) results in

|

AR, = 1. ” ¥
e 2, F wr 2 Z: 4 71(1,,P)>2 (6;,,0},)); ®,9) (4-L3)

£=0 pm=-

Also, for very large P, but where eP and ¢P have not quite become equal

to ® and ¢, respectively, the elastic scattering amplitude can be ex-

panded as
00 £ m o
f@,8)= 4n;_0 ,%:.f . 77 Y, (6,8)Y(@,5) (h-4)

where the al's are constants to be determined. The same type of expan-

* , =,
sion can be carried out for Gn(P):

2 X o Uy (4,P) n :
G.(P) = wr% é/’ < “ar V) @)

'

Here, the functions ul(knP) are the solutions to the problem

A(L+1)
PL

d Uy + [»ﬁ:‘ &'n(p)..

a7 Ju=e (4-46)
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Lim Cy Uk, P) = C, sin (b p- 22, A (4-17)

2
pP~»00

where Cl and ﬂl are constant for a given 1.

Substitution of the above expansions into Equation (4-41), and
utilization of the asymptotic form of ul and the spherical Bessel func-

tion

Sin (46,, p- 17[/2) (4-L8)
4P

Fo & F) =

vields the following expression:

. o, . - (A~ Ay )
o £ 5 ([ W]

_ ax eiénpg )}/qm(ep/%) zln'{@/@)

& [ il R p-irnja+
#r st 2 [t 4 %)

=0 m=-4%

(A, P-4 + m m*
AP R) 1 yie,, ) Y@, 0)
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The left- and right-hand coefficients of the ingoing waves must be equal

1o}

or

and therefore

G:(P)= Y4r

CI 6xp(~-é 71): /

N
)

= expliy)

m=-f fénP '(

(4-50)

(4-51)

(4-52)

For large P, Equations (4-47) and (L4-48) show that ul(knP) differs from

jl(knP) only by the constant T& which is called the phase shift corre-

sponding to 1.

Equation (4-46) has been studied extensively in the theory of

elastic collisions (98), and the methods of its solution are well estab-

lished for potential functions Un(P) which decrease faster than l/P2 as

P increases,.
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Semiclassical Method. For sufficiently high values of kn and 1
such that

1@ = unity (4-53)

/1,(‘F I JU (P)
P L unity (L-54)

and for potential functions 5;(P) decreasing faster than p~2 as P in-

creases, the semiclassical approximation may be employed. Thus, when

the above criteria are met, the solutions ul(knP) can be approximated as

(99)

A, (P
= = 5'7 f ' c ] -
Uy (4, P) 7 Kn,x(”) / (P Kw(P) dpP + T/ (4-55)

where Po is the classical "turning point" shown on Figure 4, and Kn l(P)
M
is defined as

Koo (P) = [ 4= T, = (& va)/p [ )% (1-56)

Numerov Method. For low values of ko and 1, Equations (L-53)

and (4-54) will not generally hold true. If the potential function Un(P)
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decreases faster than l/P2 with increasing P, one can still obtain the
solutions ul(knP) by resorting to the numerical integration of Equation
(4-46), As shown by Mason, et al. (100), proper utilization of the
Numerov method (88) can generate values for ul(knP) almost as rapidly as
Equation (4-55).

With the Numerov method a linear differential equation of the type

represented by Equation (4-L46), or

dy
dx*

= .’C()() 7, (4-57)

can be integrated by using the step-by-step relation (88)

'Z 7’/1-l B ?n-z- (HL//l)f (xh-.l )7h~.1_ /O(H)y/l) 'F(Xn-l ) ?n-/

ﬁ* = (4-58)
n .
1= (H ) £(X,)
Here, the constant H is given by
H = X - X (4-59)

Of course one needs to know the starting values Yy and Yy but Mason's
group found that this requirement can be avoided provided:

(a) The potential a;(P) has a strongly repulsive core of the type
shown in Figure U,

(b) The integration is begun at a point just to the left of the
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classical "turning point", Po'

(c) The starting values are taken to be about equal and at some low

- value (about 10'9).

This approximate rule was verified by several sample calculations

for the case of HBr - Br.

As will be demonstrated later, the value of the phase shifts, nl’
will be unnecessary in light of the model to be used and the calculations

to be made. Hence, no mention will be made of their method of calculation.

The Transition Integral

-%
Combining Equations (3-49), (4-26), and (4-52), the function Xp

can be written as

4'7111 u (;@n/]/ m, m?
& ——ei—';:/—)— )% (ep/df) };/ (@/é)

Now , f;(@,é) is the scattering amplitude for the reaction of A and BC, in
state n, s li’ m, ki to form C and AB, in the state n (nf, los Mo kn).

In the first-order approximation, only that term in Equation (3-“9) corre-
sponding to the state n should be included in any calculation of f;(@,@).

This is consistent with the neglect of coupling between different vibra-

tional states.
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Linear Complex Model

Attention will now be focused on the transition integral of Equa-

~ tion (3-37) which is defined as

T =f[ETG Wy dn 56,4649, PP sin6, 6, db, (6D
These integrals can be evaluated rigorously only by expending many hours
on a high speed computer (70). Thus, it is desirable to attempt to sim-
plify the computation of Ti through the use of some plausible model, such
as the "linear complex" model. The "linear complex" model, as mentioned
in Chapter III, assumes that valence interactions rigidly align the con-
figuration of the A-B-C reacting system at interatomic distances close to
?ﬁB and rgc. The applicability of this approach to the system H + Br2 -
Br + HBr will be discussed in the next chapter.

—% -%
Let Xg represent the function Xp when the system A-B-C is re-

stricted to a straight line, i.e., 8, =T - 8, and'¢AB = ¢, + T, and

—

X-* =X;’ (r, ”-e,ﬂ/”""pp/P/ep/(?a) (k-62)

A8 /
IS

Also, because of the nature of valence-type interactions, ﬁ} takes on
significant values when the order of magnitude of P is about rgc, the
equilibrium bond length of molecule BC, and tends to vanish faster than

P-2 as P increases., Thus, most of the contribution to the integral T;

% —¥
will come from the region in which Yf can be replaced by Xp It is
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reasonable to assume, therefore, that the integral T; can be approximated

as

Je?qg C/¢ (“-63)

x PXdP sin 6y d6, 4B,

Expansion of Wave Functions

Because the coupling between final states was neglected when the

, .
translational motion coefficients Gn(P) were being obtained, the only term

* -

-% . . .. 4% .
of X of concern in the calculation of Tn is Gn(P) zn(rAB,P). From

Equation (4-60) the expansion of this term is

wr Y (6,.8,,) R, ( 'P)i S A <k (l-6l)
1‘ AB/¥pg ” V;g/ e 2__[4 vé
(’(I'(ﬁnp) m, m/*
CTEr % ) @)

——
and that of the corresponding term in Xe is
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s

h

)2

=0
). |

(4-65)
ey

4r yq‘m‘(n‘ep/rf’d)) R (}’

>

X Uﬂ' (‘@n P) m, "’/*
e

Here, the subscript on 1 and m has the purpose of associating these two
quantities with the orbital angular momenta of the final state. Also,

the initial asymptotic wave function ¢, can be expanded as

m, oC <
v, = Z, (r,) >‘/? &, & Z D Anje )zt r)  (4-66)
) Ly=e 4=

At Go i '23)?'1, (M. 4.1,) )Q:(ewjéa)y’(%‘;«@()

by virtue of the relation

A

U, = exp(id-R) Y (08) 2, (1) (4-67)

= explid (g tMT)) )" (8, 8,) 2, (1,)

'~



Here, M, denotes mc/(mB + mc).
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Substitution of Equations (4-65) and (4-66) into Equation (4-63)

vields the following expression for T;:

| - 2 , -
T* Z ._ 2 AT explay ) it
=0 {

(4,
ST D A

8

m, X
‘ . . ° PN ——
x %,; (/19,:/7?1‘-45,’) yp (&}m/(&e) z(esc/%c)‘{j’; ‘/3/)
L 3

The above equation, in conjunction with the relation

/2 :
nt” T

£ (e )

(4-68)

(4-69)

can be used as the starting point in the calculation of reaction cross-

sections for specific bimolecular, highly exothermic exchange reactions.
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In the next chapter, the foregoing development will be applied to the

calculation of reaction cross-sections for the reaction H + Br2 - HBr +

Br.
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CHAPTER V

REACTION CROSS-SECTIONS FOR H + Br2 — HBr + Br CORRESPONDING TO

ELLISON'S POTENTTIAL-ENERGY SURFACE

There are several reasons why the H + Br2 - HBr + Br was selected
to test the methods outlined in the previous chapter. First, infrared
chemiluminescence experiments have yielded information on the manner in
which the energy of reaction (about 4l kilocalories per mole) is distri-
buted among the product molecules. By performing relative intensity mea-
surements of the infrared emission spectra of the H + Br2 - HBr + Br re-
acting mixture, Polanyi and his co-workers (10) were able to estimate the
relative values of the detailed reaction rate constants E(nHBr’lHBr)'
Here, T and ;HBr represent the vibrational and rotational quantum
numbers, respectively, of the product HBr. The detailed rate constants
provide information on the relative rates at which reactive collisions are
forming HBr molecules in the state Lypps lHBr' By summing their results
over all possible rotational states lHBr’ Poclanyi, et al., obtained de-
tailed rate constants i(nHBr) for reaction into the specified vibrational
states nHBr' In Table 3, the values of these rate constants are reported
relative to %(n = 3) = 1. The significance of this experiment is that

HBr

various potential-energy surfaces for the reaction H + Br2 - HBr + Br can

be assumed, and then some preliminary quantum mechanical calculations can
be made until agreement with the results of Table 3 is reached. The most

successful potential-energy function can be used to continue the calcula-

tions until the total rate constant Kt is obtained for several temperatures.
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Comparison of the theoretical rate constant can then be made with the

experimental value.

Table 3. Detailed Rate Constants for Formation of HBr in Various
Vibrational States; Normalized to the Detailed Rate Con-
stant for the Third Vibrational State (from Infrared
Chemiluminescent Experiments of Polanyi (10)).

Vibrational Quantum Detailed Reaction Rate
Number of HBr Constant

3 1.00

b 0.6k

> 0.19

6 0.05

A second reason for the study of H + Br,, — HBr + Br is that the

2
diatomics-in-molecules method of Ellison (41) has been used to derive a
potential-energy function for this system (9). Thus, certain features of
this function can be retained and others varied in order to accomplish the
task of fitting the infrared chemiluminescent data.

A third reason for considering H + Br, - HBr + Br is that the light

2
mass of hydrogen relative to that of bromine reduces by an order of magni-
tude the amount of calculations required to determine the reaction cross-
sections.

A fourth reason is one that deals with the applicability of the
linear complex model to H + Br2 — HBr + Br. 1In his classical mechanical
study of this reaction (60,111), Polanyi noticed that the collinear tra-

Jectory was a fairly good description of the typical H + Br trajectory.

2
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In this reaction, the light H atom tends to come right up to the nearest
Br atom before the more distant Br atom has time to leave; in other words,

rH-Brz decreases first, then HRr.py iRCTEases--as is implied in a recti-

linear trajectory.

Finally, experimental rate constants are available for H + Br2 -

HBr + Br, although the stationary state hypothesis is necessary to extract
these constants from the measurable rate of the reaction H2 + Br2 - 2 HBr
(101).

Ellison's Potential-Energy Function

As discussed in Chapter II, the diatomics-in-molecules method of
Ellison's is designed to calculate potential-energy surfaces for simple
molecular systems without evaluating exchange or coulombic integrals or
resorting to adjustable parameters. Instead, one is confronted with the
problem of obtaining experimental energies for the ground and excited
electronic states of all the possible diatomic and monatomic combinations
present in the molecular system.

By beginning with conventional valence-bond structures for HBr,
Br2, and H--Br--Br, Ellison (9) obtained expressions of the type repre-
sented by Equations (2-24) and (2-25). The resulting Hig and Him were
substituted into the secular equation, Equation (2-15), and an expression
for Vt(rHBr,P) was obtained.

Valence-Bond Structures

Ellison began with two valence-bond structures for IBrBr, the
canonical (102) structures (1) H-BrBr and (2) HBr-Br. The associated

wave functions can be represented by
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-
i

labe|-]abe] (5-1)

Ia Lcl- Ic’«EZ,

Ho
"

The symbol a represents a 1ls orbital located on the hydrogen atom, and b
and c¢ denote Lp orbitals on each of the bromine atoms. It shall be under-

6 6 hsg 3dlo hpu electron orbi-

2 .2
stood that the nonbonding 1ls 2s~ 2p 3s2 3p
tals should also be written into the determinantal wave functicns. A bar
over an orbital symbolizes B-spin, while no bar means «o-spin. The notation

I abe | is shorthand for the determinant

RO, bu) gl Cli)ox (i)
a)ala) bQa) pR) Q) x(2) (5-2)
a3)als) h3) pe) <) aAld)

According to Ellison, the diatomics-in~-molecules theory is easier
to execute if the wave functions are not normalized, even for infinite
separation of the nuclei.

Ellison utilized the simplest valence-bond structures for HBr and
Br2. If A denotes the H atom, B denotes the Br atom closest to the H atom,

and C denotes the Br atom farthest from the H atom, the diatomic valence-

bond structures may be written
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?‘AB _ I““ . lﬁ“ (5-3)

o Lal- Jabl

AN
U

¥ = ahl (5-5)
g = |2} (5-6)

Equation (5-3) represents the ground singlet state, whereas Equations
(5-4), (5-5), and (5-6) represent the excited triplet states for AB;
analogous expressions for the AC and BC molecules are also needed.

The Energy Matrix Elements H
nm—

To illustrate the diatomics=-in-molecules theory presented in
Chapter II, two integrals, HléAB and HZZAB, necessary for the solution

of Equation (2-15) will now be evaluated. From Equation (2-31)

PR _ - *  (P&) (5-7)
H —/Ff; A H AAe T dT

PR PR PR ”

The primitive function corresponding to the canonical structure ?2 is

written
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_ n - -8
V{l - (a;b1<'3’ - {al bchl (5-8)
Operation on ‘i’2 with the antisymmetrizer AABA(AB) results in
o= T - datbl € (5-9)
AABA(AB) (/1 [al)}c_ ]‘ |

Solving Equations (5-3) and (5-4) for &b in terms of ‘E’lAB and ‘IszB and

utilizing the identity in Equation (5-5), one can rewrite Equation (5-9)

as
o= 4 (A, pAE) . A (5-10)
Ars As) $/L 2 (9/1 A A
Employment of the diatomic Hamiltonian HAB yields
= L/pAB (A8 -AB L AB)  _ -AB _ A¥ (5-11)
HABAAB A(AB)% ol(E/ 1 +LL %1 )C I:L Lf_/’, C

By Equations (5-3) to (5-5), the above expression can be rewritten as
) — 1 [~AB/ _ - -
HAB AAB A(AB) L/,/z ) [tl (ICLLI“ e b,)c (5-12)

+E*(1abllall) e |- £ ablc
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Consequent application of the supplementary antisymmetrizer results in

(AB) |

W Toaga - _
AAB HAsAAsA(AB) 9/1 - I/ [f,A (labcl-labr:l) (5-13)

¥ EJ_AB(IEEbc’ +(aIc)}“Ejglabc’}

. (AB) . .
Denoting A, o HABAABA(AB) by Hyp and employing Equations (5-1)

and (5-2), one obtains

7’23 q,/z = ;Ll" [EiAB i_[/l + EZAB(;\ Q:L“ f,) ) (5-14)

Reference to Equation (5-7) yields

| AR Y
HY = [E*% s, + EX (2 S-S50 /2 (5-15)
and
AB T _ AB _A8 . .
Hu = Ltl Sl: * k; (1.5“-52,)] /l (5-16)

where
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Shm = / f[:: S[//n Q/r (5-17)

By carrying out a similar procedure for each of the other HPQ, Yn

and the 1—5 ‘l’n, it can be shown that

A, 4 = £7¢ (5-18)

o= [E2E-1,) + BN CE )]/ (5-19)
A 4 [E,”‘ ¥,o+E°0 - 4, )] /2 (5-20)
M, %~ (1,4 ) + EN(L+ %) ] /1 (5-21)
H,. 4 = EF & (5-22)

H, ¢ = E, 4, (5-23)
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All the integrals Hiz and Hi can thus be obtained by substitution of
Equations (5-18) through (5-23) into Equation (5-7), and the energy
matrix elements Hnm calculated according to Equation (2-27).

The Overlap Matrix Elements S
nim—

Substitution of Equations (3-1) and (5-2) into Equation (5-17)

results in

S, = Ata3E-5E-5 15 5 S (529

Wn
7.0
\
,:U\
i
[
~
%
[a)
-i_
Uy
N~
+
2N
r~
I
o
3(/\ ]

In his diatomics in molecules method calculations for the H20, H3,
and H; molecules, Ellison (103) discovered that the energy results obtain-

ed for neglected overlap between atomic orbitals, i.e., §fQ = 0, did not

differ significantly (less than 0.4 kcal) from those obtained when overlap
between atomic orbitals was included. Thus, to avoid the insurmountable

task of correctly calculating the overlap between atomic orbitals for a

molecule containing bromine atoms, he neglected all the S

PQ’

Therefore,

overlap integrals between structures simplified to
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S =595 =3 (5-25)

The Ground State Energy Curves EP%_

Since no sufficiently accurate theoretical or empirical potential-
energy curves are available for the ground singlet states of HBr and Br2,
one must resort to more approximately formulated potential-energy func-
tions. The best approximate function available for ground singlet states
1s probably the Hulburt-Hirschfelder curve (104), which has been thoroughly
reviewed by Steele, et al. (105). Mathematically, this potential-energy

function is written as

Vir) = DL(;\_ e—x)z + cx’ c"—M(H bx‘)]-D (5-26)

where

X = a (r-12) (5-27)

Here, D is the sum of the dissociation and ground state energies for the
diatomic molecule, r. is its equilibrium distance, and a, b, and c are
experimentglly determined parameters. The molecular parameters a, A,

D, L B, @, and T for Br, and HBr are taken from the work of Herzberg

2

(106), whereas the parameters b and c are taken from the work of Hulburt
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and Hirschfelder (10L4). Table U includes these spectroscopic constants.

Table k. Spectroscepic Constants for Br, and HBr to be Used in
Ellison's Potential-Energy Function

Molecule a, it A, sec/k /gTam D, gram I\.Z/sec2
BI‘2 1.962 0.6861 31898
HBr 1.809 0.1054 62753

r. A 52, 2 2, 2

Molecule e, B, gram A /sec o, gram A" /sec
Br, 2.284 0.16071 0.0005k
HBr 1.4k 16.826 0.4ko

o2 2

Molecule T, gram A” /sec
Br, 4,028 x 10‘8
HBr 6.585 x lO-h

It should be noted that Hulburt- Hirschfelder curves are usually
very accurate in the region near equilibrium, and thus should not ad-
versely affect the potential energy for those interatomic configurations
contributing most heavily to the reaction cross-sections.

The Excited State Energy Curves

To circumvent the nonavailability of even semiempirical potential-

energy curves for the excited triplet states of HBr and Br,, Ellison (9)

23
postulated that the final polyatomic molecule energies should be relative-
ly insensitive to diatomic excited state energies and devised a simple

scheme for approximating these potentials. In elementary valence-bond

theory (102), the ground singlet and excited triplet state energies
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(relative to separate atoms) for the equilibrium internuclear distance r,

are gilven by the expressions

E.= JtK (5-26)

1€

E = J-K (5-29)
e
where J and K represent the coulomb and exchange energy, respectively.
Teking J = p Ele’ where p is a parameter, equal to the fraction of the
total energy that is coulombic at the equilibrium distance, and substitut-

ing into Equation (5-29) gives

E = [ (1/)*)) (5-30)
1€ <

The values of p were varied from about 0.1 to 0.4, Ellison supposed that

the excited triplet state is repulsive for all distances, and proposed to

represent it by the simple exponential expression

E

L T A exp (- gr) (5-31)

where Equation (5-30) is utilized to evaluate one of the two constants «
and B. For large R, Ellison assumed that the coulomb energy 1s a negligi-
ble fraction of the total energy. By taking J =0 atr = hre (r = 3re for

Bre), Ellison obtained the relationship
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(E) — ..(El) (5-32)

e I”=‘+ré

from which the second of the constants ¢ and B was determined.

Ellison found that modification of the parameter p in the range
0.1 to 0.4 causes only small (0-2 kcal) changes in the activation ener-
gies for all of the reactions studied, and that for the specific reaction
H+ Br2 - HBr + Br, changing p only causes the downhill slopes to change
in shape. Thus, he settled on the value 0.15 for p since it has often
been assumed that the total binding energy is approximately 12-15 percent
coulombic (107).

Algebraic Expression for the Potential-Energy Surface

Utilizing all the appropriate expressions presented previously in
this chapter, and employing Equation (2-15), one obtains the following

expression for VL(rHBr’ rBrz):

. ‘ 12 )Y _
iH”Hu“Hu‘“u“§[M{%rlhm~mlU~szmHUvm@)3“(53@

v, = ;

where

(5-34)
EBC

~
*~
~w
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- -~ [AB i ~AC 3 A 8¢ (5-35)
H‘L H).‘ El 2 tl + Z E‘)~ 1+ EI
= L pAB L3 A8 _Ac 3, (5-36)
= = -~ [ 2 = 8¢
Hll 2E 1] El t 2 £ FaE, 42 £,
Here the Him do not appear since, according to Equation (2-47),
A (5-37)
Hnm B El ‘§nm

The separated atoms are assumed to be in their ground electronic states,
for which the energies are taken as zero.

Special Features of Ellison's Potential-Energy Surface

Values of Vr(r - ) were calculated in the manner just de-

2
HBr <5.0A, 0 < rBr2 < 7.0 A at intervals

of 0.05 i for each interatomic distance. Figure 5 contains plots of Vi

versus r for different constant values of r . The retention of de-
HBr Br2

finite Morse curve features by Vr, with respect to rHBr’ even when rBr

takes on small values lends some justification to the perturbed Morse

HBr’> B

scribed over the region O < r

2

oscillator model developed in the previous chapter for bimolecular, highly
exothermic exchange reactions.

Plots of V. versus r for various constant values of r are
L Br2 HBr

shown in Figure 6. Note that the Br-Br interaction is greatly distorted

by the presence of the H atom, being only slightly attractive when H
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approaches within 2.0 A of the closer Br atom.

Fitting of Ellison's Potential-Energy Surface to Morse Curves

To apply the methods developed for the perturbed Morse potential
model to the reaction H + Br2 = HBr + Br, the curves represented in Fig-

ure 5 were fitted as closely as possible to Morse curves. As suggested

. . E
in the previous chapter, the Morse parameters D(rBrg)’ rHBr(rBr2
UM(rBrZ) can be taken directly from the plots of VL Versus rp. . at con-
stant r . Then the remaining Morse parameter a(r_ ) can be obtained
Br2 Br2
from Equation (L4-7) by using a value of vy at a point to the left of
rIE{Br(rBr ). The Morse parameters obtained by this procedure for Ellison's
2

potential-energy surface are listed in Table 5. The point used to calcu-

), and

late a(r__ ) was taken at 1.0 A.
Br2
Reference to the original paper by ter Haar (81) reveals a certain
criterion to be met by the parameters A(P), a(P), D(P), rgBr(P)’ if ter
Haar's solution is to be applicable to the Scroedinger equation for the

perturbed Morse oscillator, Equation (4-4). This criterion can be ex-

pressed by the equation

P (P) = (p) | - _
A D0) [ea v —awn ) o2 (5-38)

The parameters listed in Table 5 meet this criterion for all values of P.

Simplification of the Reaction Cross-Section

The Reactive Scattering Amplitude

Beginning with Equation (L4-68), the "linear model" relation for
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Table 5. Parameters Used to Fit Morse Type Functions V to V for
the System H-Br-Br

Br.’ i rgBr’ i D, gram Az/sec2 U, gram liz/sec2 a, ﬁ'l
0.0 1.4750 73423 1017876 1.828
0.1 1.4300 72803 847603 1.832
0.2 1.4000 71026 705247 1.834
0.3 1.3775 68319 586393 1.854
0.4 1.3675 64993 487193 1.860
0.5 1.3750 61376 Lol339 1.863
0.6 1.3850 57760 335026 1.866
0.7 1.3950 54361 276916 1.862
0.8 1.4o75 51314 228086 1.892
0.9 1.lk17s 48686 186961 1.856
1.0 1.k250 IVSISES 152252 1.8Lk4
1.1 1.4325 4h738 122885 1.841
1.2 1.4350 L3437 97936 1.84k
1.3 1.4325 L2696 76539 1.841
1.4 1.4350 42819 57744 1.849
1.5 1.4325 Lli506 40289 1.862
1.6 1.ke2s 49153 22380 1.892
1.7 1.4175 47695 2637 1.844
1.8 1.3925 46695 -16898 2.128
1.9 1.4275 33921 -33202 2.163
2.0 1.4325 28768 -44838 2.241
2.1 1.4325 27149 -52591 2.275
2.2 1.4325 27500 -57357 2,264
2.3 1.4300 29139 -59981 2.387
2.4 1.4k275 31668 -61200 2.195
2.5 1.4250 34777 -61595 2,147
2.6 1.4200 38191 -61582 2.111
2.7 1.4200 Li16ko -61416 2,055
2.8 1.4175 Lh937 -61240 2,017
2.9 1.4175 48031 -61114 1.974
3.0 1.4150 50716 -61060 1.951
3.1 1.4150 53011 -6107k4 1.922
3.2 1.4150 54gLo -611k1 1.899
3.3 1.4150 56500 -61248 1.880
3.4 1.4150 57783 -61379 1.866
3.5 1.4150 58790 -61524 1.855
3.6 1.4150 59596 -61673 1.846
3.7 1.4150 60228 -61818 1.839
3.8 1.4150 60727 -61956 1.834
3.9 1.4150 61122 -62084 1.829
4,0 1.4150 61435 -62201 1.825
4.1 1.4150 61686 -62304 1.823
4, 2 1.4150 61886 -62395 1.821
4.3 1.4150 62052 -62475 1.819
LoL 1.4150 62185 -62543 1.818
4. 5 1.4150 62297 -62602 1.817
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the transition integral, a convenient expression for the reaction cross-
sections of H + Br2 - HBr + Br will be derived. First, the notation of
Equation (4-68) should be altered for the sake of symbological brevity.
Let the components of B in spherical coordinates be symbolized as follows:

P=P, 6 = GP, and ¢ = ¢ Likewise, change the notation for the spherical

D
components of ?AB so that r = ?AB’ £ = QAB’ § = ¢AB'
Now since
P =i 4 w0 = (5-39)
Br .
2 ")” H”Hr HEBy
the vector ;ér is tentatively approximated as § because of the smallness

2
of mH/(mH + mBr)' The validity of this approximation will be discussed
later. Incorporating this assumption and the aforementioned notation into

Equation (4-68) gives

. L oe oo X , . S .
Femnt 8 S S o A T an G (50
n f':c j":a ‘3:0 m 2=,

U oy [ Uy () . .
G i Ar) (A P) (1)

Ln i
R, (e;7) 2, (P) PP rodr [ [T Yo(4,5) si0g 4 ds

4:¢ % =0

el A m, % s
¢ ) LS . m, ) .
J { (r-e, x10) ) (0,#) Y7 (60) ) (6,8) sine dsds
R : s

$:5 “9=¢



Integration over the angular coordinates results in

: y, & = = A , -
To=ln) 22 2 2 4t e ubimag )
=0 e L'jeo m = -k,

t. 1€, ”, "__ . . e . ™ et
Lot y (8, 9) IHEN AT 5! 0(-/) Ty

2/

y

J(243+/) llfl)(lk f/) ;; (11411) C?(xf/;j/ TR,
C(.K-", l,(/O 00) C(k,/ L, 14 "y, i /--/'?.) C(f(',, .('..;/ ,L‘,/"-f/"’/")

The symbol 6a b represents the Kronecker delta defined by

b4
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(5-L1)

(5-k2)

and the expression I(ll, 1, 13) is shorthand notation for the integral
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8
8

L pt P)
drdP rtpr -t Jo (4ir) jo, (M. &:P) d (v, P) (5-43)

En (r;/’) Zn,(f))
‘ :

The symbols C(ll’ 1, 13; m s My, m3) represent the Clebsch-Gordan co-

efficients (108) and have certain properties that provide for conservation
of angular momentum and parity in Equation (5-41) . The principal proper-
ties of the Clebsch-Gordan coefficients are summarized in Appendix B, and

reference to them will be made frequently.

Finally, summation over 12 yields, in conjunction with Equation

(L-69), the following expression for the reactive scattering amplitude:

H M y, <& Y A A
{‘n @® ¢) = IR Et ("L"r) . 4§— — Lt < l(’z’(sf/)"

I(8,54) ) Nag )t )@ ) } (u”)
I-f"lfc

C(I.,[J/ [y;——/‘n[ /l;‘/—-h')#) C(:p;/*%, 47‘//'01 ¢)/.O)

C (;(),/ /; / , m;/-/’n/) C(‘(’,/f,:/'[y ;O (7,/))
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The Total Reaction Cross-Section

The differential reaction cross-section is obtained by substitution

of Equation (5-44) into Equation (3-30), or

4w
(@,8)= 2 7/% [f@n| (5-5)

and the total reaction cross-sec on is obtained from c; ®, &) by integra-
tion over ®, 3.
Now, referring to Equation (1-8), the expression for the detailed

specific rate constant is
K (ﬂ '[( /l“(— ; n‘h/,(;//“ - /( ///M )‘7—(46 PR NV "én,»')g . -(f PRAZE ) (5—“6)
: i

X /i,‘_‘ (/L/ L, //5,_1) FHC(}Z) : }i; c/)’//s,

. o]
By assuming FBrz(ni, 1.s m, 5 pBre)
tailed rate constant can be averaged over m, and then summed over ma to

is independent of m, the specific de-

get

n

— 1 —)4
K (n 4 ;7 ,)-—/(/-’/;f.»)rr(né.,ﬂ.-,r;;fe i) B ) -

s ) /' — 3 t_z- j —
* Fgrl(,7‘/ L //;Sr‘)_) a/ /)/4 (/ })ls’rL
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where

( ; - e e 48
U(‘A* /,74/’(4; ’én e /1;) — . (5-4 )

I 2'"__'. >_____ Uh(&‘,ﬂ‘/ NN »K",,//{,, ('{////{ )

Thus, the cross-section defined by Equation (5-U48) is really the cross-
section of interest with regard to rate constant determinations.

From Equation (5-44) the reaction cross-section of Equation (5-48) is

2 o oo o Ay —
oo Ko Mo N3 S S5 S s (5-49)
T Gr) D 8 22 22
AN /' ,Z/\I l/:J ,£3-~3 ‘,3'_,0 m= - ‘(‘/ ~’£u/

” . / -.é-i’. A - .
ST RGHI) (i) k) T8 L, 06) I(4,94,)

b4
17); ’ );

(24 +1) (2£,41)
(22,+1) (28] +1)

C (f;/ £ Ly ; T ) C.([{/’[}’/ 19 7= /-')/""'{)

C(f‘,l3/l.y/' , ,0) é(l, S/ZV/OO )} C(A,/( /'ZV ﬂ)/,/u/—/’l{,)

S I ’ '
Ch, &k ;0 90) C(l’,/,(;}.(i,;v o) <ld b i) 0,0,0)



By the orthogonality relations given in Equation (B-20) of

Appendix B
£, A
2__ 2___ (.(k,,l‘/ . /:1/—“;4) C(( .,(yl/l /”,/”’.‘/"""() (5-50)
mpz-£ ==
. 7 .
so summation over mi, ml, and lh yields
. ‘éﬂ /‘ /’l | L 3 § RN LS
Tk £ A0 4)= & 2 ._L..t) br) 2 o 2 T (551
“ /"( ,Zﬂf» { [ P4
/ 2 3 17
. il:ili(lf “) A ) (.21 11) 28,41)
n){: (li,‘fl) -t I ,/C/ 3)./(£//0/,( ( L f/)

Cliy, iy, dy; %) C(“U'(z Ay =mpm, " ) Sl by, Ay po90)

C (f; / "'.s// '[7 ;00 2) CL('II )k AL O’J)

Using the symmetry properties of Clebsch-Gordan coefficients (see

Appendix B), one can write
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C(‘( 13/14/_ (’0 - )C( {7/ 1/’[ "” 9, ’/") —('l) ! (5-52)

28,11
' v, 1) (28] +1)

Cliy by Um0y ,0) €U Ay g4 5y 0)

Invoking once more the orthogonality relation of Equation (B-21) in

Appendix B, one obtains

'{‘I t ’t'.? /Ef.

> > C(’[F/Is‘/ 35y~ ”y o) € s Ly, ’(] X T ")(5 53)

A= lig-4;1 =4

= S

k3, by
Thus, summation over m. and lé in Equation (5-51) results in
S LY gy ST ST BEIRE B (s
R M i T (44y11)

y - - . 4 . -
CL(Q/LH1¢}Q¢%’)CL(AUIU’W;Q”VJ I Lh/®i3)
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The discussion on computational procedure will show that the

summation over ll is bounded by li and lh’ the summation over lh is

bounded by l3 and lf, and the summation over 1. is bounded effectively

3
between two finite values. Thus, it is convenient to rearrange the
Clebsch-Gordan factor Cz(ll, li’ 1,5 0, 0, 0) by the symmetry properties

in Appendix B. The result is

ZI,H

Py )
C (ﬂl/ I&/I‘//'O/O/D/ - ‘;’f’ﬂ‘" CL(.Ig/»&/fI ;0/0/0) (5"'55)

The total reaction cross-section can then be written as

(5-56)

D"(-X";,ﬂ‘.,[;/"&,,/nl,if)'— 3

I
ES
B
V.
RS
S~———
-
T
2
V]

L6, + &) Ly g,
> ZL(,L-’:‘,,r.?,t,) ('2.(3r)) (2(-'{11)

j‘l:"a' ﬁ’ ,ﬁ,:' }j,/';(,; )

CL (‘(}(/ f}/f,, ;9 vo0) (¢ l(,f;“ £ //[/ S0, ‘_,)/0)

where
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8
g
~
=
ey
b
3
N

I(I,/o/lg) =) s e dr dP r* P —:én P..—_ },(-&; r) (5-57)

~
"

g (M AP) U P) R, (r;P) 2, (P)

Indistinguishability of Bromine Atoms

The acceptable practice in scattering theory (109) is to treat the
collision as if all the particles involved were completely distinguishable,
and then modify the resulting cross-sections to account for the indistin-
guishability. Thus, the role of indistinguishability in the study of the
reaction H + Br2 = HBr + Br has not been mentioned until now. When it is
taken into account (see Appendix C) the resulting expression for the reac-
tion cross-section is twice the cross-section in Equation (5-56). This is
the expected result since an H atom approaching a Br,. molecule from a

2
large distance will attach to either Br atom with equal probability.

Computational Procedure

Computational Formula for Total Reaction Cross-Section

The vibrational wave functions R (r;P) and zZ (P) were found to be
f i
negligible outside of the ranges 0.9 <r < 2.5 A and 1.8 <P < 3.0 4,
respectively. Therefore, the integration of I(ll, 0, 13) was carried out

for the region

0.9 < r 4 2.5 A (5-58)
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/2 £P<3CA (5-59)

only. With this restriction placed on the integration of I(ll, 0, 13),

it is seen that the maximum value of the argument of iy (Mi k, P) is

3

(3/2)k., since M, = 3. Based on a Maxwell-Boltzmann distribution, more
i i~ 2

than 99 percent of the collisions between H and Br2 at 1000°K occur with

k, less than 20 A_l, so the maximum argument of 3y (Mi k. P) that will be
3

of concern is 30. Now, an important property of spherical Bessel func-
tions is that, for fixed x and increasing 1, jl(x) reaches a maximum at

about 1 = x, and then decreases rapidly until, at 1 = X, 1t is only a

3
negligible fraction of its maximum. Hence, the summation over 1. will be

3

terminated in Equation (5-56) after 1, = LO without incurring serious

3

error,

Next, one of the selection rules in Appendix B for the Clebsch-

Gordan coefficients states that C(lu, 1,5 150, 0, 0) vanishes identically

1°

until 1. is in the range | L, -1 | <1

< . .
1 l)+ + li' This provides for

1
conservation of angular momentum. And, finally, the Clebsch-Gorden co-
efficients c(1f, 13, 1,5 0, 0, 0) and C(lu, 1,5 150, 0, 0) insure con-

servation of parity by vanishing except when (lf + 1+ lh) and (lh T

3

ll), respectively, are even integers. Thus, the expression for G(ki, n; s

15k 5 ng, lf) to be used for computational purposes is
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b . o AR o A Y s (5260)

go  __Ktd fﬂ;’;

> 2> T i) (24, 11)
£3=0 X{;:,lej"!" II:II.,'I;J

Cl(,?(,l‘;/j‘,; 0,00) Cl(f‘,,,&/[,/-o/o,o)

I*(4,,0,4;)

where the summations over lh and 1. are to be carried out in steps of two.

1

Also, because of the effective range of integration of 1(11’0’13) men-

tioned above, one can now use the relation

. 3.0 1.5 N ; .
[, et)=/" [ dpar P Al (5-62
P=1/.% r=o.q P

<, (3 A P) jel4.r) Z, (F)

X /—?— ("/P/ J{('Uf)/
/’F
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Calculation of the Integral I(1 O;¥32_

l,

Using the trapezoidal rule, Equation (5-61) was integrated with an

interval of 0.025 A for both r and P. The integration was carried out on
the B-5500 computer of the Rich Electronic Computer Center, Georgia Insti-
tute of Technology. Before the actual integration was performed, the

functions U.(r,P), ull(knP), zni(P), ﬁnf(r;P), 3 (kr), ;313(—5- k.P) were
computed separately for the appropriate values of r and P.

The Potential-Energy Function. The function V_(r,P) was computed

.
from Equation (5-33) and the function ﬁf(r,P) was then obtained from

UL (i.—/ p) — \/L (r, /)) o vf;’rL(P) (5-62)

where Vo (P) is the ground state intermolecular potential for an isolated
Br, molecule. Utilizing the parameters of Table 4, the function VBr2(P)
was calculated using the Hulburt-Hirschfelder function, Equation (5-27).
After the appropriate values of ﬁf(r,P) were computed, they were punched

out on cards to be used later in the integration program.

The Initial Vibrational Wave Functions. The vibrational wave func-

tions Z (P) were calculated from the equation given by ter Haar for the
i
Morse oscillator (81):

AND - (nhe v, X
f.t)e X

Zn(P) = N,, w M ("”/-2/4'[0—*'2/),".,2)() (5-63)

P

where
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A= (g, [£°)™ /e (5-64)

K= 140 exploatp-9)] (56

V\/ = X /l (5-66)

After taking the parameters a, PE, and D from Table L4, the confluent geo-
metric function M(-n, A/D - 2n; 2X) was calculated from Equation (4-16),

and the normalizing constant Nn obtained by numerical integration of

. 3.0 IAGD = 2(nrYVs) 2 =Y
N ___[ W ‘ & X M (‘n,lAm'lh;ZX)dF] 1(5-67)

n
P=1.%

Using Equation (5-63), the necessary values of Zn (P) were calculated for
i

n, = 0, to ni = 8 and then punched out on cards to be used in the integra-

tion program,

The Vibrational Wave Functions for Perturbed HBr. Using the para-

meters in Table 5, the functions ﬁn (r;P) were obtained from Equations
f

(4-13) and (4-23) for n. = 0 to n, = 9. The normalization factors N (P)
f

were calculated from Equation (4-28), the integrals of which were evaluated
by the trapezoidal rule. The results of these calculations were stored on

cards as ﬁn (r;P) for later use.
t

The Spherical Bessel Functions. The necessary values of the
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spherical Bessel functions jo(k.r) and jl (3 kiP) were calculated in the
i

3

early stages of the actual integration program for I(1 0,13) and stored

l’
in the computer memory for later use. Since the arguments of these func-
tions depend on ki’ the initial energy of approach was specified prior
to their calculation. The function jl (% kiP) was computed for l3 =0

3

to 13 = 4O by the Miller recurrence algorithm (llO) as follows.

For fixed P, values of zero and one were assigned to F d

L+ 1 an
1

FL, respectively, where L is some integer larger than > ki P. Taking L

equal to 80, the recurrence relation (110)

F %) = FO) - —X  F (x) (5-68)
Lol - HOLH)L L

for spherical Bessel functions was generate a sequence of numbers {FL}

down to L = 0. The exact value of jo(% kiP) was computed from

do (X) = Sin(X)/ X (5-69)

and compared with Fo(x). Every FL(X) was multiplied by the ratio jo(x)/
Fo(x) to form a sequence {GL(X)}. Comparison with tables of spherical
Bessel functions for x = 10, 50 (110) showed the disagreement between
GL(X) and jL(x) to be less than 0.0001 percent,

The function jo(kir) was computed from the exact relation given
by Equation (5-69),

The Final Translational Wave Functions. After specifying the

initial and final states and the initial energy of approach, the final
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wave constant kn was determined from conservation of energy (see later
discussion). When the criteria represented by Equations (4-53) and (4-54)

were met, Equation (4-55) was used to generate values for u (knP). Other-
1
wise, the program shifted into the Numerov method previously described in

Chapter V. Equation (L4-58) was used to compute values for u (knP) where

1

H equaled 0.001. At P = 1.8, 1.825, ..., 2.575, 2.600 &, the corresponding
values of u, (knP) were stored in the computer memory to be used in Equa-

1
tion (5-61).

Additional Comment. To check the accuracy of using an interval of

0.025 A for r and P in the numerical calculation of I(

1

11,0,13), the fore-

going procedure was carried out for ki =10 A~ > ny = b, li = 60, nf = 3,

1. =10, 1

. = 40, 1, =140, 1, = 100 at intervals of integration of 0.025 A

3
and 0.0025 A. The value I(ll,O,l3) obtained by using the smaller interval
of integration differed by less than three percent from the value corre-
sponding to the larger interval.

When the subprogram for ull(knP) was written, the value of H was
decreased to 0.0001 in order to insure that Equation (4-58) gave fairly
accurate results when the larger value of H, 0.001, was used. The values
of ull(knP) corresponding to H = 0.001 differed from those values corre-
sponding to H = 0.0001 by less than five percent.

The Clebsch-Gordan Coefficients

Before summing over 1., 1, and 1, in Equation (5-60), the Clebsch-

3’
Gordan coefficients C(lf, 13, 1,5 05 0y 0) and C(lu, 15 11; 0, 0, 0) had

to be calculated. From Equation (B-27) in Appendix B,
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Chordy-ds)! (hr iy ) (B4 604,

CoU, ks 0,0,0) = (2y11) (it (5-70)
q! A
[ (@-4,)! (EJ!YEWJ
where
Q= (44l 6)/a (1)
Since C(ll, 1, 13; 0, 0, 0) for Q not an integer, Equation (5-70) was

used only when Q is an integer.
2
The method used to computer Ce(lf, 13, 1,5 05 0, 0) and C (lh’ li’

ll;

0, 0, 0) was as follows:
(a) The logarithms of n! for n=0, 1, 2, 3, ..., 300 were calcu-
lated and stored in the memory of the computer.

(b) The squares of the Clebsch-Gordan coefficients were computed

from the relation
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CH4,, by 450, 00) = exp $a [ (A 220! ] = 24n [(@-8)1] (572)
y/n [(ll *’G'IL)!] + I [(.Ilffg‘}z/)./]* Lo [(.(7,+Y,_+L73H)!]

— e (el) -2 4 [(a- ) =28 L@ 411} i)

as needed. Equation (5-72) was used to avoid exceeding the maximum
number limit (about lo6u) of the computer. Thus, it is desirable to use
a relation in which the logarithm of 300! appears rather than 300! itself.

Conservation of Energy

Because reactive collisions under consideration are assumed to be
adiabatic, the total energy is conserved during the collision. Assuming
that H and Br2 initially approach each other with a relative translational

energy of (1;2/2 pi)ki, the total energy E of the collision can be expressed

as
A L
= .+ E + E (5-73)
E M *; vib, i ret, .
where E .. . and E . represent the initial vibrational and rotational
vib,i rot,i
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energies, respectively, of Brz. The final translational energy is then

given by

L o A p
T A, = 241, A +E vie,c YV E. -

- (5-7k)
rot,; EV:-A/{ Erof/f

by conservation of energy.
Notice that the requirement of a positive final relative trans-
lational energy effectively limits the magnitude of the internal energy

of HBr. Thus, the maximum allowable value of no is the largest integer

satisfying the inequality

————)\;\D (h‘ + '/,1) - (I")# s '/1)1/,42 L E +)p (5-75)

Also, for each final vibrational state Doy the maximum rotational quantum

number lf is the largest integer satisfying
- ‘ + j - ) Z 5_76
[B-a(n+ )] & (I t1) =T 47 (4 11) (5-76)

CE+d =2 in) v opin)

The parameters A, B, D, o, and T for HBr are taken from Table L,
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Results of Calculations

Relation of Reaction Cross-Sections to Final State

Using the procedure just outlined, values of c(ki, n, s li; kn, ey

lf) were first calculated for E = 1000 gram ﬁe/secz, n, =0, 1, = 60.

tr,i

For conservation of energy, the maximum allowable value of N, was six.

The maximum allowable value of lf for each vibrational state is listed in

Table 6.

Table 6. Maximum Rotational State Allowed for Each Allowed Final
Vibrational State When E, . ; = 1000 gram A /sec2, n, =0,
and 1.i = 60. ot +

Vibrational State Quantum Number of Maximum

Quantum Number Rotational State

k3
Lo
37
32
27
20
12

oN Ul W N H O

1

For n, = 1, 3, and 6, the results for c(ki, n f)

f

are given in Tables 7, 8, and 9 for all of the possible values of 1 .
f

Notice that the larger values of ¢ correspond to the higher rotational

10 133 Ko Bes

states possible for a given vibrational state.
To save space, the remaining reaction cross-sections are reported
as sums over all the possible rotational states corresponding to a given

N, or
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Table 7. Reaction Cross-Sec’gion o _Versus 1. for nf = 1 When
E . ; = 1000 gram k2/sec®, n, = 0, and 1% = 60.
r,i i 1

1, o, 12 1, o, 12
0 0.00017 20 0.00346
1 0.00025 21 0.00377
2 0.00033 22 0.00409
3 0.00041 23 0.00442
4 0.00050 oL 0.0047h
5 0.00060 25 0.00508
6 0.00071 26 0.00545
7 0.00083 27 0.00585
8 0.00096 28 0.00628
9 0.00110 29 0.00671
10 0.00125 30 0.00716
11 0.00141 31 0.00760
12 0.00158 32 0.00815
13 0.00176 33 0.00863
14 0.00195 34 0.00913
15 0.00215 35 0.00960
16 0.00237 36 0.01513
17 0.00262 37 0.01626
18 0.00289 38 0.02621
19 0.00317 39 0.08500
4o 0.00899
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Table 8. Reaction Cross-Section 02Vérsus lf for n, = 3 When
E,. ; = 1000 gram A /sec, n, = 0, and 1. = 60.
r,i i 1

lf O, Ae J_f a, A2
0 0.00049 16 0.00319
1 0.00057 17 0.00346
2 0.00066 18 0.00375
3 0.00076 19 0.00404
L 0.00089 20 0.00431
5 0.00101 21 0.00460
6 0.00115 22 0.00491
7 0.00129 23 0.00528
8 0.00144 2L 0.00561
9 0.00161 25 0.00597
10 0.00179 26 0.00632
11 0.00198 27 0.00669
12 0.00220 28 0.00711
13 0.00243 29 0.02628
14 0.00268 30 0.06794
15 0.00293 31 0.29479
32 0.07721



Table 9.

Reaction

Etr,i

Cross- Sectlon g Versus 1, for n

1000 gram k2/sec”, n; =0, and 1

Dp
1

= 6 When
= 60.

[
H

[
k‘J!::O\OCO\]O\\J'l-F’wI\)I—'O

FWLWOOOOOOOOOOOo

.007
.016
.035
.076
.158
.281
.387
Ly
.501
.567
.652
.525
.291

140
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meal
A?

T (&eym des o np) = b T(ki,n b5k, 0,4 ) (5-77)
k=0
(s

Table 10 contains values of o for nf =0 to 6. It is apparent that the

larger values of © correspond to the higher vibrational states allowed by

the conservation of energy requirement.

Teble 10. Reaction Cross-Section o Versus n, When E_ . = 1000
b

gram A2/sec2, n, =0, and 1, = 60.

0.109
0.278
0.407
0.555
0.962
2.031
7.943

A\ W D HO |HF

The Effect of the Initial Conditions

The reaction cross-sections required for calculation of the total

reaction rate constant (see Chapter I) are the quantities

malx

n
S(ﬁ,; /ﬂ; ///4'): i 6-('&;//7;/}4‘/"/%,,//71‘) (5-78)
N, =o :
e
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Therefore, the analysis of the effect of the initial conditions on the
reaction A + BC — AB + C is most conveniently carried out by calculations
of S(ki, ni’li) versus ki’ ni, li' Table 11 summarizes some of the results
of these calculations, and apparently the initial conditions cause little
or no effect on 8.

In order to make comparisons with the results of Polanyi given in

Table 3, values of the reaction cross-section E(ki, n, li; kn, n.) corre-

)

sponding to various initial conditions are presented in Table 12. The

symbol E in Table 12 denotes the initial relative translational energy.

tr,i

Since values for o are reported in Table 10 for the initial conditions

E, . = 1000 gram Ae/sec2, n, = 0, 1, = 60, these values are exluded in
tr,i i i

Table 12,

It is apparent that o is peaked around n, = 6, 7 for most initial

f

conditions, and therefore the rate constant

. T . - |
K=K JJ (4 /i) Tl n, ;s 4, )
'

(5-79)

AR R G

will be higher for n_. = 6 or 7 than for ng = 35 this is in direct contrast

f
with Polanyi's results in Table 3.

Discussion of Results

An examination will now be made of the physical significance of the

foregoing results, especially with regard to the nature of the potential-
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Table 11. Reaction Cross-Section S Versus E s ., L.,
tr,i i i
Etr,i gram .loke/sec2 n, li S, 5.2
500 0 30 10.223
500 0 60 10.769
500 0 100 10.930
500 2 30 10.118
500 2 60 9.824
500 2 100 10.421
500 5 30 10.928
500 5 60 11.421
500 5 100 10.872
1000 0 30 11.848
1000 0 60 12.285
1000 0 100 12.227
1000 2 30 12.627
1000 2 o) 12.511
1000 2 100 12.750
1000 5 30 12.433
1000 5 60 12.789
1000 5 100 12,962
2000 0 30 10.991
2000 0 60 12.082
2000 0 100 13.174
2000 2 30 14,004
2000 2 60 14,117
2000 2 100 14,328
2000 5 30 13.72h
2000 5 60 13.661
2000 5 100 12.962

2
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Table 12, Reaction Cross-Section ¢ for Various Initial Conditions

Etrii’ gram !.&z/sec2 _n_l i}. if. a, i@
500 0 60 0 0.101
500 0 60 1 0.263
500 0 60 2 0.391
500 0 60 3 0.532
500 0 60 L 0.947
500 0 60 5 1.986
500 0 60 6 6.549
500 5 60 0 0.097
500 5 60 1 0.283
500 5 60 2 0.413
500 5 60 3 0.558
500 5 60 i 1.186
500 5 60 5 2.221
500 5 60 6 6.663

1000 5 60 0 0.104
1000 5 60 1 0.286
1000 5 60 2 0.412
1000 5 60 3 0.588
1000 5 60 N 1.301
1000 5 60 5 2,424
1000 5 60 6 7.674
2000 0 60 0 0.056
2000 0 60 1 0.202
2000 0 60 2 0.350
2000 0 60 3 0.505
2000 0 60 4 0.704
2000 0 60 5 1.221
2000 0 60 6 2.112
2000 0 60 7 6.932
2000 5 60 0 0.061
2000 5 60 1 0.215
2000 5 60 2 0.362
2000 5 60 3 0.523
2000 5 60 4 0.814
2000 5 60 5 1.527
2000 5 60 6 2.628
2000 5 60 7 7.531
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energy surface, From this analysis, one hopes to discover which features
of Ellison's potential-energy surface should be altered in order to bring
the calculated reaction cross-sections into agreement with the experimental
results of Polanyi (10).

The Influence of Initial Conditions

The weak dependence of the reaction cross-sections on the initial
conditions ki, ni, li is due in part to the low activation energy for the
reaction H + Br2 - HBr + Br, at least for Ellison's potential-energy sur-
face (about 2.0 kilocalories per mole). Furthermore, even the effect of
this small activation energy is minimized by the perturbed Morse oscillator
method used to approximate the functions ﬁﬁf(r;P). In Figure 5, for in-
stance, the small hump to the right of the equilibrium interatomic distance
is roughly attributable to the activation energy between Br2 and the oncom-
ing H atom. In fitting the curve in Figure 5 to a Morse-type function, this
small hump was neglected. The inclusion of this small barrier, however,
would lead to only one or two additional vibrational states of limited
stability.

The presence of the activation energy hump has a very slight effect
on the value of the integral I(1 ,0,13) in Equation (5-61). 1In Figure 7,

a plot of the potential ﬁ}(r,P) for P = 2,283 A shows that the contribution
to I(ll,O,l3) resulting from the activation energy (which lies between
points b and c¢) will subtract from the major contribution toVI(ll,O,ls)
coming from the region between points a and b. But because the wave func-
tion §£f(r;P) is so small in the region between b and c, this offsetting
effect is very slight.

Another reason for the weak dependence of the reaction cross-sections
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upon the initial conditions involves the use of Equation (3-37). Because
the wave function ?; is a solution to the complete Scroedinger equation,
it should reflect, implicitly at least, the influence of the activation
energy. Even this implicit dependence on the activation energy was ob-
scured however, when the "linear complex" form of T;, i;, was approximated
by the expansion given in Equation (3-49). As mentioned in the first
paragraph of this section, the activation energy was neglected completely
in the calculation of §nf(r;P); hence, as indicated by Equation (4-9), the
functions zn(;;P) are uninfluenced by activation energy. Also, the other
functions in Equation (3-49), the translational motion coefficients Gn(ﬁ),
are independent of the vector ;, along which occurs the approach of H
toward Br2; thus, the functions Gn(ﬁ), cannot account for any effect of the
activation energy.

If Equation (3-36) were used for the differential reaction cross-

section, the wave function ?: could be expanded as

‘:P; = g J(R) W (7, ;R) (5-80)
where Jn(ﬁ) are the initial translational motion coefficients and

Wn(;ﬁc;ﬁ) are perturbed stationary state functions for Br,. Because of
their explicit dependence on ﬁ, the vector along which the activation
energy takes effect, the functions Jh(ﬁ) can be made to accoﬁnt for the
influence of activation energy. On the other hand, according to Figure

6, the potential-energy between the two bromine atoms is rendered non-

bonding upon the approach of H. This destruction of the Br2 bond makes



148

the approximation of the functions by the perturbed stationary state
approximation virtually impossible.

Distribution of the Total Collision Energy Among the Products

Tables 7, 8, 9, and 11 show that the reaction cross-sections

c(ki, ni, li; kn, nf, lf) tend to be larger for the higher internal energy
states of HBr. For each vibrational state, the major contribution to the
reaction cross-section appears to come from the higher possible rotational
states, i.e., the rotational states which barely satisfy the inequality

in Equation (5-76). Furthermore, the reaction cross-sections o(ki, n, li;
kn’ nf) for scattering into the higher possible vibrational states are ob-
viously greater than the cross-sections for the lower vibrational states.

Influence of the Final Translational Wave Functions. An explanation

of the product energy distribution lies in the character of Ellison's
potential-energy surface and its influence on the functions ull(knP)' Equa-~-
tion (5-61) indicates that a rapidly oscillating u; (knP) would have a
canceling effect on the value of I(ll,O,l3) when in%egration over P is

performed. Now, suppose a reactive collision (with initial conditions

E . = 2000 gram Ae/secz, n, = 0, 1, =0) results in a moderately excited
tr,i i i
HBr molecule (say, n, =1, 1. = 10).
From Equations (4-34) and (4-35) it is seen that

(K /ap) [#- 0,(P] = E- e (p) (5-81)

For discussion purposes, a less cumbersome notation will be adopted. Let

w=u, , and
1
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T = A = U (p) -4 +1)/p* (5-82)

Thus,

T = Gp/#) [E- €0 |- 104,01) / p* (5-83)

In order to envision how T varies with P, the effective potential
en(P) + (‘h 2/2 p,f) [ :Ll(ll + l)/P2 ] in Equation (L4-L6) and the total
energy E were plotted versus P in Figure 8. The function en(P), which is
characteristic of the potential-energy surface, was calculated from Equa-

tion (L-27). For illustrative purposes, 1. was arbitrarily set equal to

1
60, although the curve in Figure 8 is typical for any appropriate value
of ll'
For P < Po’ T is less than zero, and the solution w of Equation
(4-46) is a very small function, decreasing exponentially as P decreases.
As T barely becomes greater than zero, d2w/dP2 becomes negative and the
slope dw/dP begins to decrease, causing w to go through a maximum at point
a. As w decreases below zero, d2w/dP2 becomes positive, and dw/dP begins
to increase from negative to positive values, thereby causing w to increase
from negative to positive values. But, when w is positive, d2w/dP2 becomes
negative once again. This cyclic variation in the sign of d2w/dP2 leads
to an oscillating function w. As P increases further beyond Po’ T becomes
much greater, causing the function w to oscillate more rapidly. An impor-

tant conclusion, therefore, is that the more slowly oscillating values of

w occur in the region just to the right of point Po.
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Now, it is also true that the initial vibrational wave function

Z, (P) in Equation (5-61) is peaked around P = 2,284 X. Then the region
i

of more slowly oscillating w will coincide with the region of large Zn (P)
if PO is slightly to the left of P = 2,284 A. If such is the case, th;
resulting values of I(ll,O,l3) will be much higher than those values corre-
sponding to a rapidly oscillating w in the region around P = 2,284 A.

If 7 is to be small and positive around P = 2.284 A, it is evident
from Equation (5-83), that the function en(P) must lie slightly below
E - ll(ll + l)/P2. For Ellison's potential-energy surface, the functions
en(P) at P = 2,284 } are approximately equal to the energy levels En for
unperturbed HBr (see Figure 8). Because of the relative smallness of
ll(ll + l)/P2, the requirement that E = en(P) - ll(ll + l)/P2 be small at
P =2.284 £ is met approximately by those combinations of no and lf such

that En is slightly below E in magnitude.

The Peaking of the Reaction Cross-Sections o at the Higher Possible

2 2
i >

1000 gram Ag/sec

Rotational States. For the case where (f{2/2 pi) Kk

n, =0, li =60, n, = 3, 1, = 30, the value of T at P = 2.284 & is so large

£
(about 1900 A2 at 1

f

= 60) that the reaction cross-section c(ki, n.> 1

1 i

k » ng, 1.) is only 0.067%% 22 (see Table 8). On the other hand, if 1, =

31 with the other conditions the same, T is small and positive at P =

2.284 £ (about 500 172 for 1. = 60), and the resulting value of o(ki, n. s

1
02

1.; kn, n 1f) is 0.29479 A=,

i £’
When lf = 32 and the other conditions are the same, T is negative
for most values of ll; the corresponding values of w are small and positive

in the vicinity of P = 2,284 i, Thus, the reaction cross-section corre-

sponding to lf = 32 1is not as high as the reaction cross-section corre-
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sponding to lf

The Peaking of the Reaction Cross-Section ¢ About the Higher

= 31.

Possible Vibrational States. The major factor contributing to the peak-

ing of '5(ki> n, lis k> n.) about the higher possible vibrational states
is the closeness of the rotational levels for low quantum numbers lf.
From Equation (4-27), the energy difference Ae between a rotational state

lf and the next highest state is, for constant Doy

A én = [Bﬂs—O(AB (n¥+\/1)J (.2.&f3) - 7;8(4 ’(; 1 f: +/2 (( +4) (5-5%)

Now, as lf increases from zero in steps of one, en(P = 2.284 &) changes by
discrete amounts. For a given total energy E and final partial wave ll’

the quantity

T = (2/“4 /ﬁ‘) [E—(ﬁl/;z,uf) 2, (4+1)/p" - é‘n(p)] (5-85)

becomes smaller as lf increases, Assume that the vibrational state nf is

such that

€, (P=2.2844) < E=(£/ap, ) 4(4,41)/ P (5-86)

for lf = 0. Then there exists some crucial rotational state lé below l?ax

such that
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T(P=2.1%4¢A) > O when A, =4 (5-87)
T(P=2.23%4) <0  when L =4+ (5-88)

On the average, T(P = 2,284 &) will be smaller for smaller Aen(P), since
the smallest positive value of T (occurring when lf = lé) is indicated by
Equations (5-87) and (5-88) to be less than Aen(P). From Equation (5-8K)

it is apparent that smaller 1% S contribute to smaller values of T at

P = 2.284 R, resulting in more slowly oscillating functions uy (knP). By

1

Equation (5-75), the larger the value of n., the smaller the associated

f,
lé s. Therefore, the higher vibrational states for which Equation (5-75)
is satisfied have more slowly oscillating functions uy (knP), which corre-

1

spond to larger values of the reaction cross-sectionla(ki, ni, 1. kn, nf).

For Ellison's potential-energy surface

E, ~ €,(P)= (£K/ap1) 4 (411)/P° (5-89)

when P = 2,284 A, Thus, it is now apparent why the reaction cross-sections
T are peaked around the higher possible rotational states.

Comparison with Experimental and Classical Mechanical Results of Polanyi

It was mentioned that the calculated results for 3(ki, n, li; kn, nf)
in Tables 10 and 12 will yield, in conjunction with Equation (5-79), values

of X that are higher for n, = 6 or 7 than for n, = 3. In contrast, from

the infrared chemiluminescence of a reacting H + Br, mixture, Polanyi and

2
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his associates (10) were able to show exactly the opposite effect (see

Table 3).

"Repulsive" Potential-Energy Surface. Polanyi's group was able %>

account for this experimental behavior by reference to a "repulsive”
potential-energy surface (60). A "repulsive" surface, in the parlance o7
Polanyi, was one which resulted in the following kinematical pattern uncn
the use of classical mechanics:

(l) From a region of negligible interaction, the lighter H atom
approaches the Br2 molecule. The Br2 interatomic distance remains abouf
2.3 ﬁ until the distance between the H atom and the nearer bromine atom
decreases to about 1.45 KA. This forms an "activated state" configuration
which is very short-lived (the "activated state'" is in existence for ahout

the same time required for H to fly by Br, if no interaction were present).

2

(2) Very little of the energy of reaction is released at this point;
that is, the "activated state" energy is only slightly below that of the
reactants.

(3) The furthermost Br atom begins to depart, thus breakins up the
"activated state" configuration. As the bromine atom recedes from the HEr
molecule, most of the reaction energy is released; that is, the "actival-d
state" energy is much greater than that of the products.

The use of this "repulsive" potential-energy surface in the classical
Hamiltonian for three body planar motion resulted in only fifteen percent
of the energy of reaction appearing as internal energy of HBr. The inisisl

conditions in these studies were varied systematically rather than by - -

Monte Carlo method (22).

The reason given by Polanyl and his colleagues for the low dezree
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of vibrational excitation of HBr is that the HBr interatomic distance in
the "activated state" is essentially the normal bond length. Because of
their near-equilibrium separation, the hydrogen and nearer bromine atoms
tend to recoil together as the furthermost bromine atom is repelled away.

"Attractive" Potential-Energy Surface. By using an "attractive

potential-energy surface, Polanyi's group (60) obtained substantial inter-
nal excitation of HBr (about 88 percent of the energy of reaction appeared

as internal energy of HBr). According to Polanyi, an "attractive" potential-
energy surface is one which results in the following classical mechanical
behavior:

(1) The "activated state" is formed with the release of most of the
energy of reaction; that is, the energy of the "activated state" is far
below that of the reactants.

(2) The departure of the furthermost Br atom results in very little
release of energy of reaction.

The explanation given for the high vibrational excitation of HBr was
that the HBr bond was under stress when the furthermost Br atom was being
repelled. Thus, the hydrogen and nearer bromine atoms tended to recoil
separately rather than as a diatomic aggregate.

Comparison with Quantum Mechanics. Examaination of Figures 5 and 6

and Table 5 reveals that Ellison's potential-energy surface for H + Br2 is
an "attractive" potential-energy surface. About 95.5 percent of the energy
of reaction has been released by the time the "activated state" is formed.
With respect to the effect of an "attractive" potential-energy surface upon

product energy distribution, it is apparent that the foregoing quantum

mechanical results are in qualitative agreement with Polanyi's classical



156

mechanical results.
It is now appropriate to examine the form the potential-energy sur-

face for H + Br2 - HBr + Br must have so that the perturbed Morse oscilla-

tor calculation will be in qualitative agreement with Polanyi's experimental
results in Table 3. 1In previous sections of this chapter, it was clearly
demonstrated that when T is positive positive at P = 2.283 ﬁ, the smaller
values of T give rise to larger values of the reaction cross-section

o(ki, n, 5 li; K 5> Do lf). Thus, from Equation (5-83), it is apparent that

the closer en(P) comes to E - (52/2 p,f)l (ll + JL)/P2 at P = 2.283 &, the

1

higher will be the resulting reaction cross-section G(ki, ni, li; kn’ Nes

lf). An examination of the form of eZ(P) in Equation (4-10) indicates that

for constant no and lf,

P = 2,283 A will result in higher values of ei(P). From the perturbation

higher values of the parametric function Um(P) at

relation in Equation (L4-24), it is evident that the higher values of eg(P)
contribute, in turn, to higher values of en(P). Furthermore, from Figure 3,
it is obvious that higher values of Um(P) at P = 2.283 i result in a poten-
tial-energy surface which is more "repulsive"; that is, the energy of the
configuration r = 1.45 &, P = 2,283 & (the "activated state") is closer to
the energy of the reactants. It is conceivable, therefore, that by making
Ellison's potential-energy surface more "repulsive", smaller values of T

at P = 2.283 & will occur for less energetic states of HBr. As a result,

larger reaction cross-sections o(ki, ni, li; kn’ n lf) will correspond

f,
to lower internal states of HBr.
The above analysis indicates that if a "repulsive" potential-energy

surface were used in the "linear complex" calculations outlined earlier in

this chapter, the resulting reaction cross-sections would have been in
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closer agreement with the experimental data of Polanyi.
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CHAPTER VI

REACTION CROSS-SECTIONS FOR H + Br2 - HBr + Br

CORRESPONDING TO "REPULSIVE" POTENTIAL-ENERGY SURFACE

The qualitative analysis of the results of the previous chapter
suggested that a potential-energy more "repulsive" than Ellison's should
vield reaction cross-sections in agreement with Polanyi's experimental
findings. To verify this conclusion, a repetition of the foregoing reac-
tion cross-section calculations for a "repulsive" potential-energy surface
seems appriate. If the quantum mechanically calculated reaction cross-
sections are found to be in agreement with experiment, Polanyi's conclusions
regarding the true nature of the H-Br-Br potential-energy surface (60) will

be reinforced.

Construction of a "Repulsive" Potential-Energy Surface

The perturbed Morse oscillator method can be retained if the "re-
pulsive" potential-energy surface has Morse-like features. Thus, as dis-
cussed in Chapter IV, a plot of the potential-energy function versus r for
constant P should possess the shape of a Morse curve, regardless of the
value of P. If Morse-like features are incorporated into its construction,
the "repulsive" potential-energy surface can be partitioned in the manner

of Equation (4-1); that is,

vV (r,P) = v, (rnP) + (v,-V,) (6-1)
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where

2
V,(r,P)= D(P)f/b exp[a('P)(k—;;(p))]} F U (P (6-2)

As pointed out in Chapter IV, proper adjustment of the parametric func-
tions D(P), a(P), rE(P), and Um(P) can render (VL - VM) extremely small
in comparison with VM’ especially in the vicinity of the potential well
(see Figure 3).

Now, it is recalled that the functions §nf(r;P) depend essentially
on the form of V(r,P) within the potential well (that is, within the inter-

val 0.9 & < r < 2.5 k). Also, in the evaluation of T(1 0,13) in Equation

l)
(5-61), the form of the potential-energy function

is important only within the region 0.9 A<rc< 2.5 A. Thus, the potential-
energy function Vi(r,P) influences the reaction cross-section calculations
of Chapter V only over the domain 0.9 A<r s 2.5 A, O <P <£w», Since

VL - VM is small in this domain, a convenient approach would be to approxi-
mate VL(r,P) by the form in Equation (6-2). This approximation is necessi-
tated by the lack of detailed information concerning the actual potential-
energy surface. PFurthermore, only the gross characteristics of the poten-
tial-energy surface, such as its "repulsiveness", are of interest in the

present analysis,
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The Parametric Functions

As mentioned in the latter part of the previous chapter, a poten-

tial-energy surface of the form

) 2 _
VL("/ p)= D(P)é/— exp[a(P) (r—r;(p))}} + U (p) (6N

is more "repulsive" the higher the function Um(P) at P = 2.3 A. For
Ellison's potential-energy function, plots of VL(r,P) versus P for con-
stant r look like the curve in Figure 6. Curves of this form can be re-
presented fairly accurately over the domain O < P £ », 0.9 A<rc< 2.5 A

by the function

- PN L
V(P =5 < 0w {meplai )] -p e

It is obvious- that VL(r,P) has the Morse-like form of Equation (6-2) with

U, (P =8s<=""-p (6-6)

HEr

E .

When r equals rHBr(P)’ the function VL(r,P) approaches -Di as P
approaches infinity. Thus, VL(r,P) has the correct asymptotic form with
respect to P. On the other hand, Vr(r,P) does not have the correct
asymptotic form with respect to r. This defect in Equation (6-5) is not

serious, howevef, since the function VL(r,P) will not be utilized for

large values of r. Therefore, by proper selection of the functions D(P),
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a(P), rE(P) and the constants 8, e, B, and y, the function Vi(r,P) can
be molded into a plausible "repulsive" potential-energy function for the
H+ Br2 - HBr + Br reaction.

The Functions UmﬁP) and rEﬁP). Because the potential-energies of

0 02
vibrationless Br, and HBr are - 31,898 gram A2/8e02 and - 62,753 gram A~/

2
sec , respectively, the energy of reaction H + Br2 - HBr + Br is about

02 2
30,855 gram A /sec”. TIf the potential-energy of the "activated state"

associated with the above reaction is - 41,000 gram Ag/secz, then the

potential-energy function governing the reaction is considered to be about
two-thirds "repulsive". That is, 10,000 gram f&z/sec2 of the energy of

reaction is released during the approach of H toward Br2 to form the

"activated state". As a beginning, the function Um(P) will be adjusted
to make VL(r,P) about two-thirds "repulsive".
From his classical mechanical studies, Polanyi (60,111) discovered

that the "activated state" for H-Br-Br ccrresponds roughly to the linear

E ~ E . . .
THBr and P = rBrg' For Ellison's potential-energy

surface, Equation (5-33), the local minimum value of VL(r,P) for r = r
r® i located at r = 1.15 A, P =2.34.
Br2

It will be assumed that the "activated state" for the "repulsive"

~

configuration with r

HBr’

"

P

energy surface exists when r = 1.45 A, P = 2,3 A, If Equation (6-5) is to

possess a minimum with respect to r at r = 1.5 &, P = 2.3 &, then r_(P =

E
2.3 &) must be equal to 1.45 A. The form for VL(r,P) in Equation (6-5)
does not allow for a local minimum with respect to P at P = 2.3 A, but
according to Figure 6 this minimum was very slight even in the case of

Ellison's potential-energy surface. Thus, by this somewhat arbitrary

definition of the "activated state" configuration, the "repulsive" poten-
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tial-energy function can be written at r = 1.45 Aand P = 2.3 i as

V (r=1454,p=2.34) = exp (-2.3¢)- b, =~ 4000 (6-7)

Because DHBr is 62,753 gram Az/secz,

S = 21,753 exp(z.B &) (6-8)

Another relationship involving 6 and e can be obtained by assuming that

at r = 1.45 & and some large value of P, say P = 4.0 A, the "repulsive"

function given by Equation (6-5) has the same value as that given by the

"attractive" potential-energy function, Equation (5-33). Since this value

is calculated from Equation (5-33) to be - 61,994 gram.Ag/secz, then

2/,783 exf(—/.7c—') = aer—- E1, 994 (6-9)

and € = 1.974 i-l. Substituting this value for e into Equation (6-8)
yields & = 2,103,319 gram.&z/secz.

The "repulsive" potential-energy surface can now be written as

: . ) — (6-10)
V, (r,P) = 2,103,3/9 exp (-1-97¢ P) - D,

R

+ D(P) g /—exp[-a(P) (r- I’E(P))”L
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The Function D(P). 1In order to construct a suitable expression for

the parametric function D(P), the value D(P) should possess at P = 2.3 A

in order for Equation (6-5) to remain a reasonable approximation to the
actual potential-energy surface should be determined. A plot of the actual
potential-energy surface versus r at P = 2.3 i should yield a curve quali-
tatively similar to that shown in Figure 2. Since experimental evidence
(101) points to a low activation energy (about 2.0 kilocalories per mole),
point B on Figure 2 should correspond to a value not much greater than

-DBr . From Figure 2 it is seen that D(P = 2.3 A) should be taken as the
2

vertical distance between points A and B. Because point A corresponds to
02 2 . o2
- 41,000 gram A" /sec” and point B should only be a few thousand gram & /

sec® above -Dp (31,898 gram Ag/secz), it is feasible to set D(P) equal
2

to 17,000 gram Jiz/sec2 at P = 2.3 &; that is,

D(P=2.3A) = /7 000 (6-11)

Furthermore, if the approximate functional behavior of D(P) for Ellison's
potential-energy surface is retained, then D(P) will begin at some large

value (about DHBr) at P = 0, decrease smoothly to 17,000 gram Az/sec2 at

P=2.3 ﬁ, and then increase, approaching D as P approaches infinity.

HBr

A function which qualitatively describes this behavior is

D(p) = Dm [6 + v %an/,(lP—z.ﬂ)] (6-12)

The function within the brackets can be called the "switching function" for
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D(P) since it describes the shifting of the dissociation parameter D(P)

as - increases. Suplinskas (41) used this terminology to describe a
2

similar function in his study of the reaction K + HBr — KBr + H.
From the requirement that D(P) equal 17,000 gram ﬁe/sec2 at P =

2.3 K and D(P) approaches D as P approaches infinity, B = 0.27090 and

HBr
v = 0.72910.

The Function a(P). It now remains to formulate a plausible ex-

pression for the parametric function a(P). Referring to Table 5, it is
seen that a(P) equals 1.828 3% when P is zero, increases smoothly to
2.387 7% when P = 2.3 K, and then smoothly decreases to 1.809 i tasp
approaches infinity. Thus, it is practical to use a "switching function"

like that in Equation (6-12) to describe the behavior of a(P) with respect

to P:

a(p) = G+ H tanh (NIP-2.3]) (6-13)

Here, G, H, and N are constants which will be determined from the following
requirements on a(P):

(1) a(P) is equal to the parameter a in Table 4 for HBr when P is
very large; i.e.,

[
A (P=o) = [.809 A (6-1k)

(2) For | P -2.3 | > 1.0 &, it is assumed that a(P) for the "repul-

sive" potential-energy surface will take on values similar to those corre-

sponding to Ellison's potential-energy surface. From Table 2, the average
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of a (P =1.34) and a(P = 3.3 &) is 1.860 A, Taking this value for

a(P) in Equation (6-12), one obtains

a(P=1,3,3.3) = /360 A" (6-15)

(3) Finally, it should be decided what the desirable value of a(P)
would be at P = 2.3 A. In order that the perturbed Morse oscillator method
can yleld reaction cross-sections in qualitative agreement with experiment,
it is imperative that the function T of Equation (5-83) be small at P =
2.3 & when n, is three. From Equations (4-15) and (L-22), it is evident
that ¢ (P = 2.3 i, n. = 3) will be larger, the larger is a(P = 2.3 R). To

insure that a(P = 2.3 ﬁ) is sufficiently large to yield large reaction cross-

sections for D, = 3, it will be allowed to have a value somewhat larger than

that corresponding to Ellison's potential-energy surface; that is, for the
"repulsive" potential-energy function, a(P = 2.3 k) will be 4.00 i in-
stead of 2,387 ﬁ-l, as shown in Table 2. Because of the three quantitative
requirements for a(P), the constants in Equation (6-13) are easily found

1

tobe ¢ = 4.00 A7, H = 2.191 i7%, anaw = 2.221 A7t Thus,

a(p) = 4.00 — 2./91 tanh (2.221|P-2:3]) (6-16)

Numerical Procedure for Reaction Cross-Sections Corresponding
to the "Repulsive" Potential-Energy Surface

Now that a suitable'repulsive" potential-energy surface has been
formulated, the perturbed Morse oscillator method can be applied to calcu-

late the corresponding reaction cross-sections. Essentially, this involves
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repeating the procedure outlined in Chapters IV and V although the second
order perturbation treatment described by Equations (4-23) through (L4-28)
can be eliminated. This simplification results from the direct formulation
of the "repulsive" potential-energy surface in the form of Equation (4-3);
thus, the term Vb in Equation (4-1) is zero, and the perturbation correction
is unnecessary.

The numerical integration of

3.0 2§ _
I(II/O/‘f_;):/ / JdP dr PLI'L ';('i"”‘)' }(& v) (6-17)

P:/’s r=0.‘7

o, (54 P) 2, (P) /%",,F(r,- p) Uy (r, )

was performed in the manner described in Chapter V. Due to the alteration
of the potential-energy surface, a few factors in the integrand, i.e.,
R_ (r;P), u, (k. P), and U _(r,P), differ from those used in the previous

ne ll n f

calculations. All other numerical aspects of the procedure outlined in
Chapter V were adopted without alteration for the computation of the reac-

tion cross-sections corresponding to the "repulsive'" potential-energy sur-

face. Thus, the discussion that follows will be limited to the subject of

calculating the functions R_ (r;P), u, (k P), and U_(r,P).
Do ll n f
The Function u, (kqgl. The solutions to the differential equation

-Ll L

d*u » X,
.__!i+§1/“ [E ¢ (p)] - __(f_*’_)_}u -0 (6-18)
P
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must be recalculated for the "repulsive" potential-energy surface, which

affects u; (knP) through the function en(P). Since the "repulsive"
1

potential-energy surface was constructed so that en(P) is larger in the

region P= 2.3 A than the corresponding function for Ellison's surface,

the function

= L E-e,0)-

I A (%41) (6-19)
A >

is smaller than P = 2.3 E. Thus, for the "repulsive" potential-energy
1Y g

surface, the function Uy (knP) will not oscillate in the region around

~ o l

P 2.3 A as rapidly as did Ellison's potential-energy surface., For in-

stance, suppose uy (knP) is plotted versus P for both Ellison's and the
1

02 2
"repulsive" potential-energy surface for E = 1000 gram A" /sec”, n, =

tr,i

0, 1, = 60, n, =3, and 1, = 6. It can be shown that ull(knP) has about

thirty nodes between P = 2.0 and P = 2.6 A for Ellison's potential-energy
surface, whereas only five nodes are present over the same region for the
"repulsive" potential-energy surface. Thus, the canceling effect that the
oscillation of ull(knP) has on the integration of Equation (6-17) will be
less marked for the "repulsive" potential-energy surface than for Ellison's.
Using either Equations (4-55) or (4-57), depending on whether or
not the criteria in Equations (4-53) and (L4-54) are met, values of the
function ull(knP) were calculated for all the required combinations of
initial and final states., As in the case for Ellison's potential-energy

surface, this calculation was performed during the main computer program;

that is, the functions Uy (knP) were computed during the actual integration
1
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program for I(ll,O,l3), whereas the functions ﬁf(r,P) and ﬁn (r;P) were

T
previously calculated and entered as input data,

Potential-Energy Functions

Values of the potential-energy function ﬁf(r,P) were computed and
stored on cards for later use as input data. For convenience, the equa-

tions used in this calculation are summarized as follows:

V (r,P)= W, (P) + D(P) f/- exp[~a(P) (r- ';—‘P)).? }z (6-20)
W (P) = 2,/03,3/9 exp (-1-97 P) - D, (6-21)
D(p) = D/~l8r [0.17070 + 0.72910 tanh ([P-i.30) (6-22)
a(p) = Hooo =2.191 Hdanh (222 [P~2.31) (6-23)
i (P)= /45 (6-24)

U, (r,P) =V P) +D -b, {/— ex,)(/lz.zw)}L (6-25)

n

Here, the variables P, r, and rE(P) have the dimensions of ﬁ, the functions

VL(r,P), Uﬁ(P), D(P), and ﬁf(r,P) have the dimensions gram 32/sec2, and
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a(P) has the dimension it

Eigenfunctions and Eigenvalues of Perturbed Morse Oscillator

Because the term Vb in Equation (k-1) vanishes for Vi(r,P) as formu-
lated above, the perturbed Morse oscillator eignefunctions and eigenvalues
equal ﬁg (r;P) and ei(P), respectively. From Equations (4-13) through
(4-21) vilues of these functions can easily be computed. For convenience,

the above mentioned equations are rewritten in the order that they must be

used to obtain ﬁ; (r;P) and eg(P):
f

A(p) = [,z/umgr /,;’:"ZJ " /a(p) (6-26)
B= 2 A(P) D(P) “‘lﬁf (6-27)
X = AP} yD(P) exp['-ﬂ“’) (r-rE(P})] (6-28)

M("ﬁzﬁi)()= !/ + %’—“x ;e ) X 4... (6-29)

B (eg+i1) 2!

Cr)brg ) Ergea) i)y
B8 (p+i) (Bt2) -+ (5+n#.-/) —'/');T
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A(P)YDIP] - (n, V)

R:,#(r; P) = exp ("X/l) (X/l) M(n;/ G/'X)/I’ (6-30)

2 VD(P) (h, +Y2 )"
¢ /n) , v, ) < , ) (6-31)

L/, 2
; i) - } (4 k1) - Ao (4
t BHBr 2 (4 )=ty (”;*/")!;(f(”) Tass (ﬁ(( )
The symbol Hmp denotes the reduced mass for HBr, while the other unde-
fined symbols have the same menaing as in Equations (4-9) through (4-20).

It is more convenient to use the normalized eigenfunctions

R, (r;P) = N, (0] R (r; ) 6-3)
£

where the normalizing constant is

2.5 vy

Nto = [ [ (R, irm) e | 639

0.9

The computed values for ﬁn (r;P) and en(P) were stored on cards for
use as input data with the main progran.

Range of Initial and Final Conditions

Values of the reaction cross-sections E(ki, ns Ls ks nf) and
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S(ki’ n, li) were calculated for all the combinations of the initial

values:

E = Xeo, jeco, /sce, 2ece  gram ,lfL/_sgac1 (6-34)

tr,

3
]

0, /,2,3 4,8 ¢7

2.

A

]

30, k¢, 90, /20

These conditions have a high probability of occurrence at a temperature of
lOOOOK, and should be representative of most of the collisions occurring

between H and Br2 at that temperature.

Discussion of Results

Using the modification mentioned in the previous section to alter
the numerical procedure outlined in Chapter V, values of S(ki, ni, li)
were calculated for the range of initial conditions given in Equation

(6-34), mables 13, 14, 15, and 16 contain S(k;> n,, 1;) for B, . = 500,

tr,
02
1000, 1500, 2000 gram A /sec2, respectively.
To examine the behavior of the reaction cross-sections with respect

to the final vibrational state, the cross-sections S(ki’ n., li) were broken

i
down into their components E(ki’ n,, li; k s nf) for several different ini-
tial conditions. Tables 17 and 18 show that, for most of the initial con-

ditions, the largest values of'g(ki, n, li; kn, nf) correspond to the for-

mation of HBr in the lower vibrational states. How this behavior translates
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Table 13. Reaction Cross- Seciélon S Corresponding to
E = 500 gram A /sec
tr,1

n. 1. S, 10&2 n, 1. S, 132

= 1 3 _* —_—

0 30 6.9989 5 30 4.5320
0 60 7.1675 5 60 4 .5829
0 90 7.1328 5 90 4. Lok
0 120 7.0350 5 120 4, 6943
1 30 6.6960 6 30 4. 1062
1 60 6.5863 6 60 3.9401
1 90 6.6675 6 90 3.9400
1 120 6.4848 6 120 4.0031
2 30 5.9525 i 30 3.6592
2 60 6.0841 7 60 3.5438
2 90 5.9480 7 90 3.6123
2 120 5.8783 7 120 3.6701
3 30 5.4506

3 60 5.5875

3 90 5.4431

3 120 5.4955

L 30 5.1856

4 60 5.0876

4 90 5.0838

L 120 4 ook
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Table 1k. Reaction Cross-Section S Corresponding to
E, . = 1000 gram A%/sec®.
tr,i

02 0
n, 1. S, A n, 1, S, A
= = 2t 2 _
0 30 7.5671 5 30 4.6865
0 60 7.3824 5 60 L.5087
0 90 7.4420 5 90 L.6216
0 120 7.2333 5 120 4,.5933
1 30 6.6789 6 30 L. 150
1 60 6.5210 6 60 Iy, 0919
1 90 6.6892 6 20 L.2573
1 120 6.4122 6 120 4,199k
2 30 5.9123 7 30 3.5288
2 60 5.9666 7 60 3.6528
2 90 5.804L 7 90 3.5411
2 120 6.0211 7 120 3.5078
3 30 5.5512
3 60 5.5484
3 30 5.4050
3 120 5.5962
- 30 5.1777
L 60 5.1018
4 90 5.0461
in 120 4, 9273
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Reaction Cross-Section

E

5

- Re
— 1500 gram A</sec”,

S Corresponding to

|2
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=

30
60
90
120
30
60
90
120
30
60
90
120
30
60
S0
120
30
60
90
120

.1989
.0789
.6819
L7733
.6056
L7170
.Laeok
.5328
. 9692
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.0129
.82
L4511
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.8003
L7556
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.1333
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L0077
.8623
L7991
.8006
8770
L6413
L7931
L7332
.5216



Teble 16. Reaction Cross-Section § Corresponding to
E, . = 2000 gram £2/sec2.
tr,i
n, 1, S, i@ n, L, S, ie
T _* = =
0 30 7.3194 5 30 4, 7727
0 60 7.4188 5 60 L. 7334
0 90 7.2202 5 90 4,6236
0 120 7.3597 5 120 4, 6587
1 30 6.5785 6 30 4, 2040
1 60 6.7955 6 60 . 1172
1 90 6.5202 6 90 4, 1064
1 120 6.4958 6 120 4 .2050
2 30 5.9641 7 30 3.5791
2 60 5.8959 7 60 3.8637
2 90 5.8509 7 90 3.8572
2 120 5.9594 7 120 3.4502
3 30 5.4561
3 60 5.3799
3 90 5.3958
3 120 5.4001
by 30 5.0598
i 60 5.1738
L 90 5.0163
i 120 5.1253
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Table 17. Reaction Cross-Sec§%on g Corresponding to
Etr,i = 1500 gram A</sec*,
n 1 n T, f&g

|
|
|

0 30 0 1.8709
0 30 1 2.6707
0 30 2 1.8437
0 30 3 0.5959
0 30 i 0.1hk62
0 30 5 0.0485
0 30 6 0.0230
0 60 0 0.3199
0 60 1 0.6176
0 60 2 3.2168
0 60 3 1.8711
0 60 L 0.7139
0 60 5 0.2236
0 60 6 0.1260
0 90 0 0.3070
0 90 1 0.4330
0 90 2 3.8247
0 90 3 2.1361
0 90 L 0.6611
0 90 5 0.2358
0 90 6 0.0842
0 120 0 0.5468
0 120 1 1.1100
0 120 2 2.5201
0 120 3 1.7048
0 120 i 0.6151
0 120 5 0.1733
0 120 6 0.0554
0 120 7 0.0478
i 30 0 0.0256
4 30 1 0.4606
L 30 2 2.4207
L 30 3 1.3924
i 30 4 0.4646
It 30 5 0.1128
I 30 6 0.0321
L 30 7 0.0095
4 60 0 0.0215
i 60 1 0.4k278
L 60 2 2.1171
L 60 3 1.5306
L 60 4 0.5159
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Table 17. (Continued)
— o2

" hoon -

L 60 5 0.1305
i 60 6 0.04k9
4 60 7 0.0120
I 90 0 0.0085
l 90 1 0.1208
i 90 2 0.6311
b 90 3 2.1775
b 90 L 1.2428
i 90 5 0.1059
i 90 6 0.1392
L 90 7 0.0208
I 120 0 0.0102
i 120 1 0.2181
i 120 2 0.7370
L 120 3 1.8614
L 120 b 1.1078
L 120 5 0.3507
i 120 6 0.1088
i 120 7 0.0272
7 30 0 0.0267
7 30 1 0.2277
7 30 2 0.7228
7 30 3 1.4266
7 30 L 0.8009
7 30 5 0.3h26
7 30 6 0.0773
7 30 7 0.0167
7 60 0 0.0110
7 60 1 0.2015
7 60 2 0.472h
7 60 3 1.5257
7 60 L 1.0953
7 60 5 0.3846
7 60 6 0.0831
7 60 7 0.0195
7 90 0 0.0105
7 90 1 0.1819
7 90 2 0.3814
7 90 3 0.6323
7 90 i 1.6133
7 a0 5 0.6755
7 20 6 0.1686
7 90 7 0.0551
7 90 8 0.0146



Table 17. (Continued)

— o2
O i
7 120 0 0.003k
7 120 1 0.0991
7 120 2 0.2413
7 120 3 0.5634
7 120 4 1.2218
7 120 5 0.9408
7 120 6 0.3405
7 120 7 0.0806
7 120 8 0.0307

17¢<
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Table 18. Reaction Cross-Section o Corresponding to
E, . = 2000 gram Ae/secz.
tr,i
n 1 n o, Ae

|
|
|5

1 30 0 0.3629
1 30 1 0.731kL
1 30 2 3.1559
1 30 3 1.7252
1 30 L 0.4729
1 30 5 0.1110
1 30 6 0.0192
1 60 0 0.5221
1 60 1 1.0642
1 60 2 1.4450
1 60 3 1.7450
1 60 Iy 1.3306
1 60 5 0.5079
1 60 6 0.1397
1 60 7 0.0410
1 90 0 0.3811
1 90 1 0.9877
1 90 2 2.4651
1 90 3 1.7217
1 90 L 0.7576
1 90 5 0.1428
1 90 6 0.0489
1 90 7 0.0153
1 120 0 0.5376
1 120 1 1.1004
1 120 2 2.5316
1 120 3 1.5634
1 120 L 0.5665
1 120 5 0.1kh42
1 120 6 0.0360
1 120 7 0.0161
I 30 0 0.0127
I 30 1 0.3066
4 30 2 0.8072
Y 30 3 2.12h9
N 30 L 1.3042
L 30 5 0.4664
L 30 6 0.0301
i 30 7 0.0077
Ly 60 0 0.0187
4 60 1 0.0872
Ly 60 2 0.8117
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Table 18. (Continued)
— 02

i Bk i

L 60 3 2.2063
4 60 i 1.4195
L 60 5 0.549k
L 60 6 0.0702
L 60 7 0.0108
b 90 0 0.0079
b 90 1 0.1082
L 90 2 0.6194
L 90 3 2.4575
b 90 i 1.3487
L 90 5 0.3722
i 0 6 0.0823
L 90 7 0.0201
L 120 0 0.0063
i 120 1 0.0971
i 120 2 0.5388
i 120 3 2. 72k
i 120 4 1.4661
L 120 5 o0.hko71
4 120 6 0.0899
i 120 7 0.0276
7 30 0 0.0137
7 30 1 0.1172
7 30 2 0.6212
7 30 3 1.6229
7 30 4 0.9114
7 30 5 0.2173
7 30 6 0.0566
7 30 7 0.0188
7 60 0 0.0098
7 60 1 0.0725
7 60 2 0.4361
7 60 3 1.7086
7 60 L4 1.1327
7 60 5 0.3964
7 60 6 0.0868
7 60 7 0.0208
7 90 0 0.0097
7 90 1 0.1528
7 90 2 0.2722
7 90 3 0.5117
7 90 i 1.5887
7 90 5 0.9443
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Table 18. (Continued)
— oD

il 5o °:

7 90 6 0.3009
7 90 7 0.0614
7 90 8 0.0155
7 120 0 0.0028
7 120 1 0.0718
7 120 2 0.2032
7 120 3 0.kol7
7 120 4 1.3080
7 120 5 0.8943
7 120 6 0.35U46
7 120 7 0.0837
7 120 8 0.0371
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with respect to the detailed rate constants K must be determined through
the use of Equation (5-79).

Dependence of Reaction Cross-Sections 0 on the Final Vibrational State

By calculating the cross-sections c(ki, ni, li; kn, n lf) for all

f’

of the possible final states corresponding to the initial conditions and
employing Equation (5-77), the reaction cross-sections 5(ki, ng, li; k , n_.)
were determined. The results are reported for (1) all the possible combi-

nations of E, . = 1500 gran Az/secz, n, =0, 4, 7, and 1, = 30, 60, 90,

120 in Table 17, and (2) all the possible combinations of By
2

A2/sec2, n; =1, 4, 7, and 1, = 30, 60, 90, and 120 in Table 18.

= 2000 gram

Assuming the initial conditions are described by a Maxwell-Boltzmann
distribution for a temperature of lOOOOK, Eep s = 1500 gram.ﬁe/sec2 corre-
>
sponds to a relative velocity about midway between the most probable and

average relative speeds. The average relative translational energy at

1000°K is E . = 2000 gram ﬁz/secg.
tr,i

b

The fraction of Br2 in the indicated vibrational-rotational states

are given by the quantity

-E  An i)/ /4T
Qut) g e T
e e ?f‘ (6_3\)

Q; t

In
where Eint(ni’ 1i) are the coupled vibrational-rotational energy levels,
g, is their degeneracy factor, and Qint 1s their corresponding partition
i
function (112).

From Tables 17 and 18 it is obvious that most of the H + Br2 colli-
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sions involve those internal states of Br2 leading to reaction cross-

sections which are peaked at the lower vibrational levels of HBr. Since

the integrand in Equation (5-79) is proportional to Fio o, it is apparent

t
that the larger detailed reaction rate constants will occur for g < b,
Therefore, when Equation (6-20) is used as the potential-energy surface,
there exists excellent agreement between the experimental results of

Polanyi (10) and the perturbed Morse oscillator calculations.

The Total Reaction Cross-Sections S

For all combinations of the initial conditions given in Equation
(6-34), values of S(ki, n, li) were obtained by summing the cross-sections

8(ki, ni, li; kn, nf) over all the possible vibrational states of HBr.

Tables 13, lh, 15 and 16 contain the results of this effort for Etr ;=
2

500, 1000, 1500, 2000 gram A2/sec2, respectively.

As in the case for Ellison's potential-energy surface, the reaction
cross-sections S(ki, n., li) are not strongly dependent on initial condi-
tions. This result is again due to the use of Eguation (3-L49) for the
exact wave function; that is, the wave function.x; does not take into
account the distortion of the incoming wave function, Equation (3-27), by

the potential VL(r,P). The slight decrease of S as ni increases is physi-

cally untenable, since increasing initial energy should lead to greater

probability of reaction. The function Z, (P) has n, nodes, and apparently
i
the increased oscillation of Zn (P) creates a canceling effect in the inte-
i
gral 1(11,0,13). Since the use of x} does not allow for the distortion of

Z, (P) in the early stages of the collision, the declining trend of S with
i

increasing n, cannot be overcome.
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The Simple Collision Theory

The magnitude of the reaction cross-sections S(ki’ n. li) compares
favorably with the cross-section required for the simple collision theory
of bimolecular reaction rates (113) to produce a frequency factor in agree-
ment with experiment (114). For instance, the simple collision theory
yields the following expression for the rate constant of a reaction A + B

- C + D:

(6-36)

[ y |
K, = M } N im T exp (-Ea“/%ﬂ'r) N,

where kg is Boltzmann's constant equal to 1.38054 gram Az/sec2 per degree
23

Kelvin, and N_ is Avogadro's number, or 6.02252 x 10 mole_l. The quantity

Eact’ called the activation energy, is the minimum amount of relative trans-
lational energy with which A and B must collide in order for reaction to

occur. The symbol denotes the collision cross-section of molecules

SAB

A and B based on the hard sphere model. Taking a typical value of S(ki, n. ,

li) from Tables 13 through 16, say, S = 7.0789 i@ corresponding to E_ . =
>

1500 gram §2/se02, n, =0, 1, = 60, and setting S

AR S, one obtains a fre-

quency factor

' ; Yo \J_ . )
Na 5:45 [8’&3 /7"/“.'] T = bz «j0t T™ cc/(;m/,_scc) (6-37)

Equation (6-37) is in excellent agreement with the experimental range of

12 L 12

1
frequency factors 6.52 x 107 T2 - 11.34% x 107 T2 cc/(mole-sec) proposed
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by Levy (10l1), Campbell and Fristrom (114), and Britton and Cole (115).
Because of the weak dependence of S(ki’ ni, li) on the initial
conditions, Kt will not be markedly influenced by temperature. The insen-
sitivity to temperature is in semi-qualitative agreement with the results
of most experimental studies (102, 103), which attributes this behavior
to a low activation energy for H + Br2 - HBr + Br. As mentioned in
Chapter V, however, the lack of influence of the initial conditions on
S(ki’ n, s li) is due primarily to the use of X; as the exact wave function
and only slightly to the low activation energy of the potential V_(r,P).

L
Determination of Reaction Rate Constants by the Modern Collision Theory

The end result of the modern collision theory (1, 2) was the deriva-

tion of the equations

oo oC

Ky =R 2 5 [ (A fp) S Choym, &) F (7)) (6-32)

/7;'30 JAY)

" /Zrl("‘/!‘/éa) P (/3/—);&

= y. - < ’ — P »
K = K Z: ZI // (’k;//“i ) ‘7(*; WOUE R ”1() (6-39)
n-=e , =0

* A

BB E gk, ) S IR
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Assuming a Maxwell-Boltzmann distribution for the reactant mole-
cules, the reaction rate constants E and Kt can be obtained from the
reaction cross-sections'E(ki, n, 15 Ko, nf) and S(ki’ n, li)’ respect-
ively.

Unfortunately, the limitations of computer time made it impractical

to consider initial conditions other than those listed in Equation (6-34).
Because of the weak dependence of o and S upon initial conditions, however,
the reaction rate constants % and K% can be evaluated approximately from
Equations (6-38) and (6-39) by using the cross-sections corresponding to
the average initial translational, vibrational, and rotational energies.
At lOOOOK, the average molecular translational, vibrational, and rotational
energies are 2072, 1090, and 1381 gram Az/secg, respectively. These
energies correspond closely to the initial conditions n, = 1, li = 90, and
Etr,i = 2000 gram.ﬁ2/sec2, for which the reaction cross-section S is given
in Table 16; hence, let Sav denote S(2000, 90).

The temperature at which Polanyi (10) determined the values of

E(nf)/ﬁ(nf = 3) for H + Br,, - HBr + Br was about 500°K (based on the

2
rotational temperature). For comparison, therefore, the cross-sections
used in Equation (6-39) should correspond to average translational, vibra-
tional, and rotational energies of 1036, 419, and 690 gram Az/secz, re-
spectively. The initial conditions Etr,i = 1500 gram A2/se02, n, = o,
and li = 60, correspond closely to the above values, so the cross-sections
o(1000, 0, 60; L nf) of Table 17 will be used for comparison with the
data in Table 3 and will be denoted as Eav(nf).

The variables of integration in Equations (6-38) and (6-39) can be

converted from the absolute momenta ﬁh, §£r to the momenta of the center-
2
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of-mass and relative motion (1, 3, 22). Conversion to spherical coordi-
nates and integration over all variables except the magnitude P, of the

relative momentum yields (1, 3)

o

R = (4n/p*) ( /27 4, T) Zl L F,(n,1) (6-10)

e q-

x[exID 1/2/446 T)U.('k../’,/ ,‘/ n/ .F)F (/P

(4n /p*) (s /2 8,7) " f_ >

S

Z) (6-41)

/;1{

S U ey 4) exp (CRelapdT) B

In turn, the variable of integration can be converted from P, to Etr : to
>
give (1, 3)
¥ .
= (2/4,T) o e
K(n) = 22" > Z: = (n,, k) (6-42)

(ﬂ /ﬂ)‘&' 7;=0

- E /b
)T (e nihe s 4, ) E e T
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(-%%T)% i i (6-43)
= \ /: (/7; ,(7; -
¢ (7( /”4) - N;=0 f.=o it ! )
o -£/
x[ 5('&'//’;/1;) E e /haT dE
Here, Etr,i has been replaced by the dummy variable E. Substituting
Eav(nf) for E(nf) and § . for S, and suming over n;, 1, result in
.
= ('2 /4€ T) * bl ) )
Kin) = -(ﬂﬁ)—/‘; 7., (n) / £ expl-£/k,T)dE (6-48)
¥y
(2/a,T) -
K £ / p(-EJAT) dE (6-45)
¢ (70 p: )™ Sar | £ erplE/4, )
since
oc oo |
> 2 F,(n,h)= ] (6-16)
n.zo Jf:.=e
The integral in Equations (6-44) and (6-45) is easily evaluated as
(1551)%, o
= Vo
/((n4) = (Z%BT/n,u;) ., (nF) (6-47)
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K, = (34, T/F/J:)VL S (6-48)

v

Equations (6-U47) and (6-48) give the rate constants in the units AS/mole-
cule-sec, If Equation (6-48) is multiplied by N, x 10-214, the frequency
factor of the simple collision theory results in units of cc/mole-sec.

02
Using the value of § . = 6.5202 A” from Table 16, one obtains

v

e 4 ;
K =3 00 x /DN A’//no/emfe-scc = L8] x /e cc /m9/¢-5e< (6-49)
¢

at T = lOOOOK. Since the range of experimental values quoted from various

1k

sources (101, 11k, 115) is 1.04 x 107 - 6.30 x 1011* ce/mole-sec at 1000°K,

the agreement between experiment and the admittedly crude calculation above

is remarkable.

From Equation (6-47) it is seen that

E(ﬂﬂ/kt (n‘cz_z) = '—U—;v (nf)/i« (,f,’(_-j) (6-50)

Using the values of Eav(nf) in Table 17, the ratio I=<Z(nf)/l={(3) can be deter-
mined for comparison with Polanyi's experimental results (10). In Table
19, the values of -I—-{(nf)/:lé(3) calculated from Equation (6-50) are compared
with the values in Table 3. There is notable qualitative agreement between

experiment and the simple calculation represented by Equations (6-47) and

(6-50).
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Table 19. Theoretical and Experimental Detailed Rate Constants
for Formation of HBr in Various Vibrational States;
Normalized to the Detailed Rate Constant for the Third
Vibrational State.
Vibrational Quantum Theoretical Detailed Experimental Detailed
Number of HBr Rate Constant Rate Constant
3 1.00 1.00
L 0.38 0.6k4
5 0.12 0.19
6 0.07 0.05



191

CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The foregoing investigation has demonstrated the severe complications
encountered in the gquantum mechanical description of chemical reactions.
Even the relatively simple derivation of an expression for the reaction
cross-section involved tedious attention to detail. Furthermore, the sub-
sequent calculation of the reaction cross-sections required so much com-
puter time, even on a high-speed computer, that computations were limited
to a few representative initial conditions.

It was shown that good agreement between theory and experiment can
be obtained if sufficient care is taken in approximating the exact wave
function for the collision. Using the perturbed Morse oscillator method
to describe the distortion of the HBr bond in the presence of another
bromine atom resulted in reaction cross-sections which, when used in a
simplified collision theory, gave rate constants that compared favorably
with experiment. On the other hand, the dependence of the rate constants
was obscured by the seemingly lack of dependence of the reaction cross-
sections on initial conditions. This lack of dependence was caused by
the expansion of the exact wave function in terms of distorted final wave
functions. Even if this difficulty were not present, however, calculation
of reaction cross-sections corresponding to all the initial conditions re-
quired to use the unsimplified collision theory of reaction rates would

consume a prohibitive amount of computer time.
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Detailed rate constant calculations by the perturbed Morse oscilla-
tor method reinforce the classical mechanical results of Polanyi. That
is, "attractive" potential-energy surfaces lead to higher vibrational
states for the products, whereas "repulsive" potential-energy surfaces re-
sult in less vibration of the product molecule. Since infrared chemilumi-
nescence spectroscopy has demonstrated that the product molecules in the
reaction H + Br2 -~ HBr + Br are formed predominantly in the lower vibra-
tional states, it is concluded that the potential-energy surface for this
reaction is "repulsive". Of course, the exact degree of repulsiveness has
not been accurately determined. The potential-energy surface which yielded
results in good agreement with experiment was, by the definition of Polanyi,

about two-thirds "repulsive".

Recommendations

Another method for obtaining the total rate constants Kt of the
reaction H + Br2 - HBr + Br is to consider the reverse reaction HBr + Br
- Br2 + H. Just as in the case of the forward reaction, the exact wave
function for the latter process could be conveniently expanded in terms of
perturbed Morse oscillator functions of HBr. For the reverse reaction,
however, this expansion corresponds to the exact wave function evolving
from the initial asymptotic state, or ?Z, and as such will describe more
explicitly the distortion of the initial relative motion. Thus, the effect
of the activation energy will not be as obscured as it was when X; was used
to describe the forward reaction. If the resulting rate constant for HBr +
Br - H + Br. is denoted by Kr, the rate constant Kf for the forward reaction

2 t

can be obtained from
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Kf=ICrK
t Teq

where Keq is the equilibrium constant for the forward reaction.

Aside from the study of exothermic, bimolecular, reactive colli-
sions, the perturbed Morse oscillator method could be used to study the
vibrational excitation of a strongly bound diatomic molecule AB upon
collision with an atom C which only slightly distorts the AB bond, That

is, expressions for the cross-sections of the inelastic process
*
C+AB —~C + AB

where AB* is a vibrationally excited molecule, can be derived by modifying
the perturbed Morse oscillator method to describe direct collisions rather
than rearrangement collisions. Calculations based on this treatment should
be in better agreement with experiment than calculations which do not take

the distortion of the AB bond into account.
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APPENDIX A

COLLISION CROSS-SECTIONS

Molecular Species

In order to keep track of the numerous molecular processes occurr-
ing in a reacting mixture of gases, one must devise a system for classify-
ing the various types of molecules. One method is to define a molecular spe-
cies as including all the molecules possessing the same chemical type and
the same internal state; i.e., all of the quantum numbers required to
specify completely the internal state must be the same. In the case of a
diatomic molecule in the ground electronic state, the required quantum
numbers would be the vibrational, total rotational, and z-component rota-
tional quantum numbers, and the nuclear spin.

For identification purposes, the chemical type can be labeled by
capital letters, A, B, C, D, ..., and the complete set of quantum numbers
can be symbolized by one lower case letter such as i, j, k, 1, ., in

parenthesis,

Binary Collisions

Before two molecules collide, they approach each other in an essen

tially straight trajectory. As their separation decreases, their common
force field becomes sufficiently strong to cause the trajectory to curve.
As the molecules or the products of their reaction depart to a sufficient

separation, the trajectory of relative motion once again becomes a

straight line. But, the distortion by the mutual force field causes the



direction of relative departure to deviate from the direction of relative
approach. The two spherical coordinates, a polar angle and an azimuthal
angle in some suitable coordinate system, describing this deviation are
called the scattering angles. For the center of mass coordinate system,
Figure 9 contains a diagram of the initial and final stages of the scatter-
ing process. The two scattering angles ® and & are clearly shown. Nota-
tionally, the two scattering angles can be written as Q.

Two molecules A(t) and B(j) may collide to exchange momenta (elastic
collision), in which case they remain A(t) and B(j) molecules. However,
one or both of the molecules may undergo a change in internal state; thus,
one or both molecules undergo a species change to A(t’) and B(j’), but the
chemical type remains the same. On the other hand, the molecules A(t) and
B(j) might react chemically with one another to become C(k) and D(1) mole-
cules, respectively. The probability with which these various types of
collisions will occur will be a function of the element of solid angle
into which the products are scattered. Let dQ2 represent the element of
solid angle oriented in the center of mass spherical coordinate system by
the angles ® and ¢ and let NS(®, §) dQ be the number of B(j) molecules re-
sulting in D(1) molecules being scattered into dQ per second. Species
C(k) and D(1) may differ from A(t) and B(j) according to whether the colli-

sion is elastic, inelastic, or reactive. Obviously,

/\/5(@/@) d0  ~ NN JO (a-1)

where N

Y B(3) molecules/cmz-sec converging on the A(i) molecules

3

number of A(i) molecules per cm”,

=
1]
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B(J)

CM

(a) Before Collision

y |

//C.(k)

(b) After Collision

Figure 9. Collision Between Two Molecules with Reaction
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Insert a constant of proportionality into this expression so that

N(®,8)d0 = 7/ (0,5) sin@d@IS (8-2)

The quantity ci(@, ®) is the differential scattering cross-section for
elastic, inelastic, and reactive cross-sections, depending on how C(k) and
D(1) differ from A(i) and B(Jj). The symbols i and f denote the complete

sets of initial and final quantum numbers, respectively. From Equation

(a-1),

N, (@, F) 40
Mo,

7/(8,8) 40 = (+3)

which has the dimensions of cm2 per target molecule. Accordingly,

0%(@, 8) dQ may be considered to be the area presented by each target mole-
cule A(t) for scattering of the products C(k) and D(1) into the element of
solid angle dQ when approached by the projectile B(j).

The total differential cross-section, Equation (A-3), can be written
as the sum of the particular cross-sections corresponding to elastic, in-
elastic, and reactive scattering. When theoretical calculations of cross-
sections are made, the three types of collisions are usually considered

separately.

The total scattering cross-section is defined as
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T =/M " T e §)sin @d®JIF (8-4)
$=0 @=o0 f / ‘

Physically, o represents the area presented by each target molecule for
scattering into the total solid angle, 4m steradians. For convergence of
the integral in Equation (A-L4), o; must increase less rapidly than l/@2
for decreasing ® as @ approaches zero.

In general, both the differential and total collision cross-sections

are dependent on the initial relative velocity with which A(t) and B(3)

approach each other.
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APPENDIX B
CLEBSCH~GORDAN COEFFICIENTS AND ANGULAR MOMENTUM

The discussion that follows closely resembles that of Messiah (116).
Relations useful to the development of the main text of the present work,

especially Chapters V and VI, are presented without proof. An excellent

text by Edmonds (108) treats the subject of angular momentum rigorously.

Notations and Conventions of Angular Momentum

The relations that follow are written in units such that'ﬁ'= 1.

Angular Momentum Components

A
Let the angular momentum operator be represented by J and its

cartesian coordinates by J , J&, and JZ. Then define the operators
X

W

- . (B-1
J, t i )

Commutation Relations

Standard textbooks on quantum mechanics (117) discuss more fully

the following relations:

[J,J, 1=
[J,7,] =
[, 4]

N

(B-2)

{1
e .
\§‘ﬂ :;ﬂ
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[J ,4]= T (1) (5-3)

[J;/\]_]=ZJZ (B-1)

where [A, B] = AB - BA is called the commutator of the operators A and B.

Basis Vectors of the Angular Momentum Operators

The following definitions will be useful:

A vector space is spanned by a set of vectors {Ai} if any vector
in the vector space can be expressed as a linear combination of the set
a1

The dimension of a vector space is the minimum number of vectors
required to span the vector space.

A set of vectors Al, A2, N An is linearly independent if the

equation

CLA +G A +rbC A2 ¢ A =0 (B-5)

requires all c; = 0. The set [Ai} is linearly dependent if Equation (B-5)

can be solved with some ci¢().

A basis of a vector space is some linearly independent set of vectors
that spans the vector space; an orthonormal basis of a vector space is some
orthonormal set which spans the space.

Spherical Harmonics and Eigenvectors

The spherical harmonics Y?(e, ¢), which are simultaneous eigenfunc-

tions of the angular momentum operators 32 and Jz, can be considered a
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representation of (2J + 1) vectors since M = -J, -J + 1, ..., J - 1, J

for fixed J. Using the eigenvector notation of Dirac (118), Y?(e, @) is

written as | J, M >, and

T NI MY =J(T+1) [T M) (B-6)

M [T, M (B-7)

il

J1J,M)

T I T, My =JT(T+)=-M(rMz) [T ME]> 9

A
represent the action of J2, JZ, and Ji on | J, M >,

Dirac (118) defines the eigenket < J, M | such that the orthogonal-

ity property of | Jy, M > can be expressed as

LT, M AN NT,My =T, M| T, M) (8-9)

AKX ,
= f yj"’ (s, 6) )’JM(e,cS) Sin® dedp = §. $

P=o0 “9=0 I mom’

Coupling of Angular Momentum

Let 31 and 32 represent the angular momentum operators of the quan-
A
tum systems 1 and 2, respectively, and let J be the angular momentum opera-

tor of the total system 1 and 2 combined; then
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. A A
J = j’l + j’z (B-10)

The tensor product of the (2,jl + 1) vectors of system 1, | Jy» My >, by

1
the (2j, + 1) vectors of system 2, | Jps My >, gives the (2j; + 1)(2), + 1)

2 .2 2
simultaneous eigenvectors of jl, 32, J, JZ:

L4 dwrmm > = 1m) 1, m) -

from which one can obtain, by a unitary transformation, the (23‘l + 1)

A A
2j, + 1) simultaneous eigenvectors of 32, 32, J2 J_, the vectors
2 1’ “2 R/

|?1?1JM>: <j”j’).m1m1.l]M> ij'ljzm/”'L> (B-12

where J = | jl - s |, + gy M= =05 Luus J.

sy
The Clebsch-Gordan coefficients

Chogamom lJM D

are the coefficients of that unitary transformation (119). The notation
for the Clebsch-Gordan coefficients in reference (116) is C(jl, Jps I3
mlp m., M)-

The definition of the eigenvectors in Equations (B-11) and (B-12)

is completed by fixing their relative phases as follows:
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(1) the | Jy» my >, the | Jp» m, >, and the J M > obey

1 2 7 I1 2
Equation (B-8).

(i1) C(jl, 32: J; jl’ jl -J, J) > 0 and is real.

Principal Properties of Clebsch-Gorden Coefficients

Reality

The Clebsch-Gordan coefficients are all real

| C ('jﬂ /'j’}. /j/' m'/’”L/M) = C‘(j,,/ j'l /\]’/ m,//)/u/ﬂ) (B-l3)

Selection Rules

The Clebsch-Gordan coefficients vanish unless

m, + m = M (B-1k)

A
IS

"}4"].'1' - 'j: *;}'; (B-15)

Permutation Relations

CGiijn s T mi,m M) = (_,)J'*} CGovgi T mym, M) (B-16)

=S +m,
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e T . ..
= (-1) /:}‘ﬁ"’ C(},/.f,/)“—m,,/\/l/ml) (B-18)

htiad (B-19)

(—I) C(}"/’}:1/\]‘/"—/77//"’”2/"/\7)

I

Orthogonality Relations

h 2 o | (B-20)
Z'—‘ 2——‘ C(}:/};,J’; m”mlfM)C(j/ '}-'1/]/’. m//m,z/Ml/:g & ’
\ TJF MM

/’)':’}' l);l:-—jq_

where | jl - 32 | < J < jl 32, J<M<J.
hig J
> 7 C(}‘l/jlp]—/' m//’”l//v/) C(J‘"/J:I/J/'m/’//”:/M ) (B—El)
J=p i M=-T
= § S ’

where -jl < my < jl and -j2 < My < j2.
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Composition Relations for the Spherical Harmonics

jf y'"'(e,q')) Y,m‘(e,a'») Y,'""(e,:») sime dedg = (B-22)
o ] ta &3

[ (2ye2j,01)

\/L
L g (—A““) } C( j’”'}l /13 /'/7/;//»1“ /".3) C(’},/j z, ;13/'0/0/0)

hth L [(lj"”)(li*ﬂ)J\/J‘

Y (e, 9) Y. “(e,8) = 2 . 2 47 (LL+1) (B-23)
L }e L= };"}.L mL:-L
m, . . . '
Y 8,0) Cliargas Limm i ) €Gyiia, L 00,0)
Special Values
When J and M take their maximum value,
CT(};/}L /}‘+il; ?l/114’jl*jL) = | (B-2L)

When either 'jl or j2 is zero,

C (};/O/ j) myo,M) = C(j;, 0y 0om ) = ] (B-25)



When my, My, and m3 all vanish, then

C‘(j,,izlé?;tyo,o)= 0

N R P j3 is odd; if 2p = jl + 32 + j. s even, then

3

, JAisttp -
C(*, /'}L,'J-g/'O/O/O) = 'Z‘;)—_}"‘__‘;L (") A()://jl/]:.s’)

P!
(p~}:;! (p-3.)1 (p-ja)!

where

(ath-c)! (b4c-a)!l (cia-b)!
A ( a/ ,3/ C) = - —'ﬁﬂ_—u'*—z_a"’_:l;;'C'T'i*)**!' -
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(B-26)

(B-27)

(B-28)
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APPENDIX C

EFFECT OF INDISTINGUISHABILITY OF BROMINE ATOMS
ON REACTION CROSS~SECTIONS

The analysis presented here is to show the effect of indistinguish-
ability of bromine atoms on the calculation of reaction cross-sections for
the reaction H + Br2 - HBr + Br. The approach used is the same as that of
Tang (70), who studied the reaction D + H, — DH + H.

Because the magnetic moment associated with nuclear spin is very
small, the coupling between the nuclear spin and other modes of motion
is very weak. Thus, a binary collision of the type A + BC - AB + C, where
B and C are identical particles, is not expected to result in any altera-
tion of the nuclear spin of B and C.

In the case of the collision H + Br2 - HBr + Br, one bromine atom
is labeled as B and the other as C. Also, the relative position vector
from the center of mass of AB to C is denoted as Eé, and the corresponding
vector from the center of mass of AC to B is labeled §£. The asymptotic

form of the wave function (without spin) can be written, in terms of the

products, as

Fnge) - Flewlir) 1@ ,8)z7,6,

P = o

or
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(A8 Flexp(i 4,8) f,f(@g, 8,) Z,(i,) (c-2)

g—’oo
Since the two bromine isotopes have atomic masses of 79 and 81,
they are both fermions (112). Thus, the bromine molecular wave function
is antisymmetrical with respect to interchange of B and C, if both B and
C have the same mass.
Assume that both bromine atoms have the same mass, and that the

total wave function for Br2 can be approximated as

p=¢ ¢ ¢ ¢, (-3)

elec AH.S-  pot vib

where ¢

elec? ¢n.s.’ ¢rot’ and ¢vib are the electronic, nuclear spin, rota-

tional, and vibrational wave functions, respectively. The ground electronic
state of Br, is symmetrical (112) with respect to inversion of the nuclei,

and the vibrational state of any homonuclear molecule is likewise symmetri-

cal. The nuclear spin state for Br, can either be symmetrical or anti-

2
symmetrical, while the rotational state of any homonuclear molecule is
symmetrical for even J states and antisymmetrical for odd J states (112).

To preserve the overall antisymmetry of the Br, wave function, however, the

2
odd rotational states must correspond to the symmetrical spin states, where-
as the even rotational states must coincide with the antisymmetrical spin
states.

If the initial state of the bromine molecule is such that the quan-

tum number J 1s odd, the nuclear spins of the two bromine atoms must be

combined in a symmetrical state throughout the collisional process; that
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is, the space wave function must remain antisymmetrical with respect to
B and C. The antisymmetrical wave function suitable for the description

of direct scattering can be written as (70)

—
—

_ _ iﬁk' ik, IR Rl -
nse)s e ¥ gz ) - L T S0 E ) o

<P e(r ) UL, o ) M) I

where ¢n(F£r ) is the antisymmetrical (including spin) molecular wave func-
2

tion for bromine and n runs through all vibrational and odd rotational

states. The total wave function Y(A, B, C) can also be written in a form

pertaining explicitly to the boundary condition with atom B going to in-

finity:

n’ AcC

| — exp (a4, [P-P']) i
Y(A6c) = - ;urﬁ‘Z[/ I T Jzuz) O

where n now runs through all vibrational states and rotational states

(even and o0dd) of HBr. Likewise, for the case of atom C going to infinity,
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L — M‘ S exP('l‘k,.!P;'F/ ) - * (C-6)
Y(A,B/C) T At Z’T.// lﬁ-ﬁ, Z,,(";E,)Zﬂ(f;;)

Wty B') ¥(asc) SE S

Because the antisymmetry of the wave function Y(A, B, C) is lost

in Equations (C-5) and (C-6), an antisymmetrical combination of the two

must be made to give the total wave function:

Y (a,5¢) =[§7~ 1, (7, E—E——— z,,(;;jc)] (c-7)

(& o 5 ff s hR) 20 T )

[ $(a8c)- VAB|IF PF

The exchange amplitude, the expression inside the braces, can be related
to the incident wave function by using Equation (C-L4) for ¥ in the inte-
grand of Equation (C-7). Since Y of Equation (C-L4) is antisymmetrical,

the second term in the bracket under the integral sign of Equation (C-7)
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just duplicates the first term. As a result, the asymptotic form of

Equation (C-7) is

LI’(A/B,C) 7;:;—*\/:?— /Z*/ %iexf(‘*n Z, (1) 7((@@) (c-8)

with

£140,8) =~ (L52) [[exp 0 K5 ) 27620) G F) (09

n

“P(ABC) &7 P

It is apparent that the differential cross-section for any parti-

cular state is

46’

7, (O $)= ,)C( q‘i){ (c-10)

Using similar arguments, the same result is obtained for bromine
molecules initially in even (J even) rotational states. Also, for bromine
molecules consisting of both isotopes (atomic masses 79 and 81), the dis-

tinguishability of Br79

and Br81 make the above argument unnecessary. In
this case, the differential reaction cross-section for the reaction of H

with each of the isotopic species is
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. 4
* = “ Jﬂi

o) =

9

The small difference in M for Br - and Br8l enables one to closely
approximate the differential reaction cross-section for HBr formation
by Equation (C-10).

For all cases, therefore, the correct differential cross-section

is essentially twice that obtained by concentrating on the reaction of H

with one particular atom in Br2.
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